
Distributed Complex Event

Recognition

Master Thesis

Master in Innovation and Research in

Informatics

Advanced Computing

Arnau Abella

January, 2022

FACULTAT D’INFORMÀTICA DE BARCELONA

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Advisors:

Sergi Nadal, Universitat Politècnica de Catalunya

Stijn Vansummeren, UHasselt – Hasselt University

DISTRIBUTED COMPLEX EVENT RECOGNITION

COPYRIGHT

2022

Arnau Abella

This work is licensed under a GNU General Public License
v3.0. To view a copy of this license, visit

https://www.gnu.org/licenses/gpl-3.0.en.html

The complete source code for this document is available from

https://github.com/dtim-upc/DCORE

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/dtim-upc/DCORE

Acknowledgements

I have so many people to thank. First, and foremost, I am grateful to my

advisor Sergi Nadal for his enthusiasm and guidance. This thesis would have

not been possible without him. Second, I am due to my co-advisor Stijn

Vansummeren. His insightful remarks and suggestions have made some of

the contributions of this thesis possible. Thanks to Marco Bucchi, Alejandro

Grez, Andrés Quintana, and Cristian Riveros, among many others, for their

numerous contributions to the field of complex event recognition that made

this work possible. I owe a debt of gratitude to my colleague and friend, Juan

Pablo Royo. He is the reason I started this master’s degree after three years

away from the academia. I cannot express enough gratitude toward my family,

old and new, who have supported me in every possible way during these two

harsh years. To my parents. They have supported me during the span of this

master’s degree. They are both remarkable parents and I am very lucky to

be their son. To my brother Adrià. He is the best brother someone could ask

for. I am left to thank my partner Marta. She has been with me every step

on the way. No words can truly express how I feel: I love you and thank you.

ii

Abstract

Complex Event Recognition (CER) has emerged as a prominent technology

for detecting situations of interest, in the form of query patterns, over large

streams of data in real-time. Thus, having query evaluation mechanisms that

minimize latency is a shared desiderata. Nonetheless, the evaluation of CER

queries is well known to be computationally expensive. Indeed, such evalua-

tion requires maintaining a set of partial matches which grows super-linearly

in the number of processed events. While most prominent solutions for CER

run in a centralized setting, this has proved inefficient for Big Data require-

ments, where it is necessary to scale the system to cope with an increasing

arrival rate of events while maintaining a stable throughput. To overcome

these issues, we propose a novel distributed CER system that focuses on the

efficient evaluation of a large class of complex event queries, including n-ary

predicates, time windows, and partition-by event correlation operator. This

system uses a state-of-the-art automaton-based distributed algorithm that cir-

cumvents the super-linear partial match problem. Moreover, in the presence

of heavy workloads, the system can scale-out by increasing the number of

processing units with little overhead. We additionally provide a proof of cor-

rectness of the algorithm. We experimentally compare our system against

the state-of-the-art sequential CER engine that inspired our work and show

that our system outperform its predecessor in the presence of queries with

complex predicates. Furthermore, we show that, in the presence of Big Data

requirements, our system performance is overall better.

Contents

List of Figures v

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 4

2 Related Work 6

2.1 Stream partitioning . 6

2.2 CER systems . 8

2.3 Distributed CER . 9

2.4 Chapter summary . 10

3 Preliminaries 11

3.1 Distributed computing . 11

3.2 Data-tuples, complex events, predicates, and valuations 12

3.3 Complex Event Query Language 13

3.4 Selection strategies . 16

3.5 Computational model . 16

3.6 Timed Enumerable Compact Set 18

ii

CONTENTS iii

3.7 Auxiliary data structures . 20

3.8 Chapter summary . 21

4 Distributed CER 22

4.1 Distributed CER framework 23

4.2 Distributed CER Engine . 24

4.2.1 Distribution Strategies 26

4.3 Distributed CORE . 27

4.4 Chapter summary . 29

5 Distributed evaluation algorithm 30

5.1 The distributed algorithm . 30

5.2 The evaluation algorithm . 31

5.3 The Enumeration procedure 35

5.4 Chapter summary . 41

6 Experimental evaluation 42

6.1 DCORE in a nutshell . 42

6.2 Experimental setup . 43

6.3 Experiments on the evaluation of complex predicates 46

6.4 Experiments on the scalability of the framework 47

6.5 Experiments on DCORE’s evaluation algorithm under Big Data

requirements . 48

6.6 Chapter summary . 51

7 Conclusions and future work 52

CONTENTS iv

Appendix A 53

A.1 Proof of Theorem 5.2 . 53

A.2 Algorithms Chapter 4 . 54

A.2.1 Maximal Complex Event Enumeration 54

Bibliography 58

List of Figures

1.1 Exemplary stream of events measuring temperature (T) and

relative humidity (H) . 2

1.2 Query on a wireless sensors network stream, which goal is to

detect fires. 2

3.1 CEQL query on a wireless sensors network stream. 13

3.2 The semantics of CEL. 15

3.3 A CEA representing the query from Figure 3.1 and an example

of stream. 17

3.4 Visualisation of the four cases of method union(u). 19

4.1 Distributed CER framework. 23

4.2 Distributed CER Engine architecture. 25

4.3 Distributed CORE architecture. 28

5.1 Illustration of Algorithm 1 on the CEA A and stream S of

Figure 3.3. The tECS is denoted in black, the attribute paths

of each node is coloured red, and the hash table T that links

the active states to union-lists is illustrated in blue. 33

5.2 Illustration of Algorithm 2 on the tECS E of Figure 5.1. 37

6.1 Queries considered in the experimental setting 45

6.2 Example input streams . 45

v

LIST OF FIGURES vi

6.3 The performance of evaluating queries Q1, Q2, and Q3 over

stream S1, S2, S3, respectively. 46

6.4 The coefficient of variation of evaluating queries Q2, and Q3

under distributions strategies RR, PoTC, ES, and MCEE. . . 47

6.5 The horizontal scalability of DCERE and DCORE evaluating

query Q2 over increasing number of processing units. 48

6.6 The horizontal scalability of DCORE under increasing number

of processing units. 49

6.7 The execution time on each processing unit of DCORE evalu-

ating queries Q1, Q2, and Q3. 50

6.8 Comparison of the execution time of an optimal distributed

system based on CORE against DCORE. 51

Chapter 1

Introduction

Complex Event Recognition (CER) refers to the identification of sets of events

that together satisfy some pattern in high-throughput streams of data. This

set of events are known as complex events. Conceptually, CER systems not

only allow to express patterns in terms of the content of the events, but also

in terms of spatio-temporal constraints, e.g. the position and the order of the

events in the stream. In order to express this spatio-temporal constraints,

CER queries include regular expressions operators like unions, concatenations

and kleene stars.

In recent years, CER has been successfully applied in scenarios like trends on

social webs [1], traffic and transport incidents in smart cities [1], and real-

time analytics [2]. Prominent examples of CER systems from academia and

industry include CORE [3], FlinkCEP [4], SASE [5], and TESLA [6], among

others. All such systems share the common goal of providing timely reaction

to situations of interest in a real-time manner. Thus, having query evaluation

mechanisms that minimize latency is a shared desiderata. Nonetheless, the

evaluation of CER queries is well-known to be computationally expensive. We

illustrate this with the following example.

Example 1.1. Consider a stream produced by wireless sensors placed in a

warehouse, whose main objective is to detect fires. We assume each sensor

can measure both temperature (in Celsius degrees) and relative humidity (as

a percentage). Additionally, each sensor is assigned a id corresponding to the

zone of the warehouse where the sensor is located. The events produced by the

sensors are composed of the id of the sensor and a measurement corresponding

1

Chapter 1 Introduction 2

to temperature or relative humidity. We write T (id, val) for an event reporting

temperature val from sensor id, and H(id, val) for an event reporting humidity

val from sensor id. An excerpt of the stream of events, indexed by order of

arrival, is depicted in Figure 1.1.

type H T H H T H H T T . . .

id 1 1 2 1 2 2 1 1 1
. . .

val 50 24 49 24 24 42 23 40 45

timestamp 0 1 2 3 4 5 6 7 8 . . .

Figure 1.1: Exemplary stream of events measuring temperature (T) and
relative humidity (H)

For the sake of illustration, assume that it has been detected that when the

temperature of a storage room increases from below 30 celsius degrees to above

40 celsius degrees and the humidity is below 25% there is a high probability of

fire. The following query retrieves the id of the zone where the fire might be

originated so the notification system can warn the security team.

SELECT t2.id FROM warehouse

WHERE (T as t1; H as h1; T as t2)

FILTER t1[val < 30] AND h1[val < 25]

AND t2[val > 40] AND t1[id] = h1[id]

AND h1[id] = t2[id]

WITHIN 10 events

Figure 1.2: Query on a wireless sensors network stream, which goal is to
detect fires.

When the query from Figure 1.2 is applied to the input stream from Figure 1.1,

the resulting complex events are: {1, 3, 7}, {1, 6, 7}, {1, 3, 6, 7}, {1, 3, 8}, {1, 6, 8},
{1, 3, 6, 8}, {1, 3, 7, 8}, {1, 6, 7, 8}, and {1, 3, 6, 7, 8}. Observe that, within a

given time window, the number of partial matches that consist of a tempera-

ture measurement followed by a humidity measurement followed by a tempera-

ture measurement may easily be cubic in the number of events in the window.

This gets worsened under the default skip-till-any-match [7] policy, where the

set of partial matches can grow exponentially in the length of the stream.

In order to overcome the issue illustrated by Example 1.1, current CER sys-

tems apply clever optimizations to compute the set of partial matches (e.g.,

Chapter 1 Introduction 3

lazily computing the set of partial matches [3]). Nevertheless, all of these

system still suffer from overhead super-linear in the length of the stream, and

thus their scalability is limited to queries over short time windows.

An attempt to overcome the detrimental super-linear complexity of contem-

porary CER systems is the COmplex event Recognition Engine (CORE) [3].

Such engine builds on top of a rigorous and efficient framework for CER

that leverages the so called Complex Event Logic (CEL) [8, 9]. To do so, it

employs a formal language for specifying complex events, called CEQL, that

contains many features used in the literature including time windows as well

as a partition-by event correlation operator [10, 3]. Such language can be

compiled into a formal computational model called Complex Event Automata

(CEA). CORE incorporates an efficient algorithm for evaluating CEA over

event streams using constant time, under data complexity, per event followed

by output-linear delay enumeration of the complex events, which is not af-

fected by the length of the stream, size of the query, or size of the time

window [9, 3].

One downside of CORE is that its filtering capabilities are limited to unary

predicates. [10] shows that unary CEL and CEA are expressively equivalent,

however, incomparable when equipped with n-ary predicates (e.g., equi-joins

like t1[id] = h1[id]). In particular, when CEL is restricted to binary pred-

icates, it is strictly more expressive than CEA. As a result, CORE cannot em-

bed the processing of n-ary filtering predicate in the automaton computational

model, and thus cannot guarantee optimal performance under non-unary pred-

icates. This only get aggravated in the presence of iteration operators (i.e.,

the kleene star), where the set of partial matches may grow exponentially in

the size of the stream, resulting in an exponential cost of enumerating the

complex events.

Departing from the discussion and challenges identified above, in this the-

sis, we embark on the task of giving a new distributed framework for CER

that deals with the limitations of many CER system to express and process

complex predicates while preserving optimal performance. To that end, we

explore how the evaluation of CER queries with n-ary filter predicates can be

distributed and parallelized. Considering the fact that such kind of complex

filter predicates cannot be embedded into the automaton computational model

of CORE, we propose to consider them as a post-process after the enumera-

tion phase. Hence, this thesis is focused on studying and proposing different

Chapter 1 Introduction 4

distribution strategies that optimize such phase. We consider, implement and

compare multiple distributed architectures, from the processing of complex

events in a centralized fashion distributing the filtering predicates to perform-

ing the processing of complex events in a distributed fashion as well. All such

features are implemented in a novel distributed architecture for CER, namely

DCORE (which stands for Distributed COmplex event Recognition Engine).

Note. Throughout the development of this thesis, several new publications

on the area had been published (e.g., [9, 3]), which impacted the results of

this work.

1.1 Contributions

Our contributions are summarized as follows:

(i) We present a distributed framework for CER. This framework circum-

vents the filtering limitations of CORE while preserving optimal through-

put. Based on this framework, we implemented two different architec-

tures: DCERE and DCORE. DCORE uses the novel distributed evalu-

ation algorithm for CER presented in this work.

(ii) We present a novel distributed evaluation algorithm for CER. The pro-

posed algorithm tackles (1) the super-linear complexity of non-unary

predicates, and (2) the exponential complexity of the enumeration phase.

Our work includes a proof of correctness of this algorithm.

(iii) We show that our distributed framework is practical. Our experiments

show that, in the presence of Big Data requirements, our distributed

framework outperforms CORE on processing queries with complex pred-

icates.

1.2 Outline

The document is organised as follows. We discuss related work in Chapter 2.

We give an introduction to CEQL and describe how CEQL is compiled into

Chapter 1 Introduction 5

CEA in Chapter 3. We introduce the distributed CER framework on Chap-

ter 4. In Chapter 5 we present the novel distributed evaluation algorithm. We

dedicate Chapter 6 to the implementation of the framework and the experi-

ments. We present our conclusions and future work on Chapter 7.

Chapter 2

Related Work

In this chapter we describe the state in the literature of the fields related to our

work. These fields include: stream partitioning, CER systems, and distributed

CER systems.

2.1 Stream partitioning

The basic idea of partitioning a stream of events is to split it so that each

processing unit receives only a fraction of it. Thus, the goal is to maximize

load balance across processing units. This is the main approach in the dataflow

graph paradigm.

Shuffle. Also known as round robin, this is the most basic approach for stream

partitioning. It consists of blindly routing events to the processing units in a

circular fashion. A perfect load balance is achieved, as each processing unit

will receive exactly an even fraction of the stream. This is the best approach

for stateless operators, as they are executed to individual events, however it

will poorly perform for the stateful case where events must be colocated. In

such case, the cost of data repartitioning will be extremely high.

Field. Also known as hash, relies on hash functions defined over attributes

of the stream to decide to which processing unit to route each event. The

most näıve approach is to define a key and use it as input to the hash func-

tion. This will distribute all events that should be collocated into the same

processing unit, and thus stateful operators will have a good performance.

6

Chapter 2 Related Work 7

However, such settings will greatly fail in the presence of skewness in the used

key. To alleviate such constraints, cost-based approaches have been proposed

to deal with skewed streams. In order to dynamically adapt to changes in the

stream, such methods require to continuously monitor the keys. For instance,

[11] introduces the concept of load imbalance. It uses two hash functions, an

explicit and a consistent hash, with the goal of minimizing an objective func-

tion that combines such load imbalance the state migration cost. To monitor

the most frequent keys, the Lossy Counting algorithm is used. Similarly, [12]

presents the Distribution-aware Key Grouping algorithm (DKG). DKG has

a learning phase where the heavy hitter keys are detected, using the Space

Saving algorithm, then in the deployment phase it is used to route events.

Partial key grouping. Partial key grouping approaches lie in the middle

between the shuffle and field approaches. They build upon the idea of balanced

allocations [13], stating that routing tuples to the least “full” (in terms of

size) processing unit, out of d ≥ 2 choices, will highly increase the overall load

balancing and thus, performance. [14] presents an approach using two hash

functions for the case when d = 2, later extended for the case when d ≥ 2

[15]. In such settings, frequent keys are monitored using the heavy hitter

algorithm Space Saving. Partial key grouping algorithms avoid sending to the

same processing unit skewed keys, and thus avoid the bottleneck generated

by hashing approaches. This, however, incurs a cost in data shuffling over the

network when events must be colocated to build a state.

Network optimization. Such approaches advocate that the cost of moving

data over the network to colocate tuples that build a state (i.e., aggregation

cost) should be considered as first class citizen in partitoning algorithms, and

thus minimized. In [16], the authors propose to track the aggregation cost by

counting the number of distinct keys sent to each processing unit, achieved

via the HyperLogLog algorithm. Then, multiple hash functions are used com-

bining the load imbalance and aggregation cost. A different approach is the

one presented in [17], where the authors propose to find correlations in used

in subsequent operators and colocate them in the same processing instance.

This is achieved by maintaining statistics on the distribution of keys across

operators. Then, for each pair of subsequent stateful operators, a bipartite

graph is built where nodes represent each distinct key and its weight, and

edges the correlations. Thus, the problem is reduced to a graph partitioning

Chapter 2 Related Work 8

problem such that pairs of keys that are highly correlated are in the same

group (i.e., same processing unit).

2.2 CER systems

In this section we describe the three categories of CER systems. In particular,

we situate CORE in the literature, and compare it against other state-of-the-

art CER systems. We focus on CORE because it is the engine that we will

be using in the implementation of our distributed CER framework and our

distributed evaluation algorithm.

Automata-based systems. Automata-based systems usually propose a query

language based on regular expressions that is evaluated by a finite-state ma-

chine. There has been many proposals based on automaton systems [1, 18],

but either they do not provide denotational semantics for their language (e.g,

SASE [5]) or they do not include the iteration (i.e., kleene plus) operator (e.g.,

TESLA [6]). CORE [3] is the first framework that provides a well-defined for-

mal semantics that is compositional, allowing arbitrary nesting of operators.

Moreover, it is the first evaluation algorithm that guarantees, under data com-

plexity, constant time per event and output-linear delay enumeration.

Tree-based systems. Tree-based systems usually propose a query language

based on regular expression. Unlike automata-based system, the queries are

evaluated by constructing and evaluating a tree of CER operators [19, 20].

The main caveat of tree-based systems is that their semantics is usually not

well defined and they do not usually provide performance guarantees.

Logic-based systems. Logic-based systems usually express queries as rules in

some form of logic and evaluate CER queries using logical inference [21, 22]. In

contrast to the other approaches, logic-based systems have formal semantics.

The main caveat of logic-based systems is that they evaluate iterations in terms

of recursive inference rules which semantics is different from automaton-based

and tree-based CER systems.

Chapter 2 Related Work 9

2.3 Distributed CER

Distributed CER systems typically propose to increase the throughput by dis-

tributing the workload into a cluster of machines. Several distributed CER

systems have been previously proposed [23, 4, 24, 25, 26], however, they do

not usually have a well-defined computational model with clear performance

guarantees [25], and they do usually suffer from communication overhead and

require complex heuristics to optimize performance [26]

Query partitioning. These approaches deal with an automata-based com-

putational model for CER. The idea behind query partitioning is to replicate

an instance of the automaton to each processing unit. Now, however, each

incoming event is a candidate to trigger any automata transition. Thus, each

instance of the automata will receive all events but disregard most of them.

This approach can be combined with hashing, if one can define a key for the

events. This is the solution presented in [27] in the context of the Cayuga sys-

tem [28]. Combined with hashing, [29] also presents an approach to deal with

query partitioning with a custom CER language built on top of IBM’s Sys-

tem S [30]. [31] presents a fine-grained approach to query partitioning, where

besides providing a PARTITION BY operator that performs hashing, they also

parallelize different runs of the automaton. To ensure correctness when rout-

ing the events to the active runs, queries are restricted with a MAXLENGTH

parameter and batches of events smaller with a cardinality smaller than such

parameter are sent to the active run.

Pipelining. The pipelining approach builds on the idea that every NFA

with at least one forward edge can be split into smaller automata running on

separate processing units [27]. Then, each processing unit will take care of

a partition of the automaton, and there will be special transitions that span

across processing units. Similarly as before, since an incoming event can cause

state transitions, each processing unit must receive every event.

Chapter 2 Related Work 10

2.4 Chapter summary

In this chapter, we presented the work related to our research. First, we

described the three categories of CER systems and introduced the CORE en-

gine. Then, we discussed several approaches for stream partitioning. Finally,

we describe existing approaches to distributed CER and their limitations.

Chapter 3

Preliminaries

In this section, we introduce the formal background that support our study.

It is important to remark that all these ideas are not original from our work,

but we are going to use them in the recognition algorithm of Chapter 5.

3.1 Distributed computing

A distributed system is a system whose components are located on different

networked computers that communicate to each other by message passing in

order to achieve a common goal. The main three characteristics of a dis-

tributed system are: concurrency of the components, lack of global memory

and clock, and tolerance to failure of individual components [32]. Nowadays,

the term is used in a much wider sense, even referring to autonomous processes

that run on the same physical computer and interact with each other by ex-

changing messages. In our work, we do not make a distinction on whether the

system operates on a cluster of networked computers or in a single multi-core

computer.

A distributed program is composed of an ordered-set of n asynchronous pro-

cesses P = {P1, P2, . . . , Pn}. For a process Pi with 1 ≤ i ≤ n, define its index,

denoted index(Pi), as index(Pi) = i ∈ N. The index of a process can be used

as a unique identifier. The processes do not share a global memory and com-

municate solely by passing messages. Process execution and message transfer

are asynchronous. Without loss of generality, we assume that each process is

11

Chapter 3 Preliminaries 12

running on a different processor. Let Cij denote the channel from process Pi

to process Pj and let mij denote a message sent by Pi to Pj. The message

transmission delay is finite and unpredictable [32].

3.2 Data-tuples, complex events, predicates,

and valuations

Data-tuples. A data-tuple t := A → D is a function that maps attribute

names to data values, where A is the set of all attribute names (e.g., id, and

val) and D is the set of all data values (e.g., integer values, string values,

etc.). Data-tuples are associated to an event type T (e.g., H and T).

Complex events. A complex event is a pair C = ([i, j], D) where i ≤ j ∈ N
and D is a subset of {i, . . . , j}. Given a possibly infinite stream S = t0t1 . . .,

the time interval [i, j] corresponds to the lower and upper bound where the

complex event C happens in the stream S, and D represents the position of

the events in the stream S that constitute the complex event D. We write

C(data) to denote D, and C(time) to denote the time-interval [i, j].

Valuations. A valuation is a pair V = ([i, j], µ) with [i, j] a time interval as

above and µ a partial function that assigns subsets of {i, . . . , j} to variables in

X, where X is a fixed set of variables s.t. T ⊆ X. We write V (time) for [i, j],

and V (X) for the subset of {i, . . . , j} assigned to X by µ. We write CV for

the complex event that is obtained from valuation V : CV (time) = V (time)

and CV (data) =
⋃

X∈X
V (X).

Predicates. A predicate represents a property or a relation of a set of data-

tuples. A unary predicate is a predicate that represents properties of indi-

vidual data-tuples. A data-tuple t satisfies predicate P , denote t ⊩ P , iff

t ∈ P . Furthermore, a set of data-tuples T satisfies P , denoted by T ⊩ P , iff

∀
t∈T

t ⊨ P .

Chapter 3 Preliminaries 13

3.3 Complex Event Query Language

Complex Event Query Language (CEQL) [3] is a CER query language based

on Complex Event Logic (CEL) [8]. We introduce the most relevant features

of CEQL by means of an example.

Example 3.1. We retake the previous example on the detection of fires in

a stream produced by a network of wireless sensors placed in a warehouse.

Suppose that we are interested in all n-tuples of T events where the first has

temperature below 30 Celsius degrees and the rest has temperature above 30

Celsius degrees, partitioned by the zone of the warehouse where the sensor is

placed. The query from Figure 3.1 expresses this in CEQL.

SELECT *

FROM warehouse

WHERE (T as t1; T+ as ts)

FILTER t1[val < 30]

AND ts[val > 30]

PARTITION BY id

WITHIN 5 minutes

Figure 3.1: CEQL query on a wireless sensors network stream.

The SELECT clause allows to project the matched complex event. In our query,

the * operator retrieves all events in the complex event. The FROM clause

indicates the input streams (e.g., the warehouse). The WHERE clause indicates

the pattern of the complex event to capture in unary CEL. In our query, the

pattern T as t1; T+ as ts indicates that we want to capture all complex

events that consist of an event type T followed by an arbitrary number of

events of type T. We remark that events do not need to be contiguous under the

default policy skip-till-any-match. The FILTER clause allows to filter events

by predicates. The clause PARTITION BY allows to partition the events using

equi-joins. In our query, we partition the events by sensors that belong to the

same zone of the warehouse. The WITHIN clause specifies the time window.

In our query, the time between the first event T and the last event T must be

within 5 minutes.

Chapter 3 Preliminaries 14

Next, we give the formal syntax and semantics of CEQL.

Syntax.

SELECT (selection strategy)? <list of variables>

FROM <list of streams>

WHERE CEL formula

(PARTITION BY <list of attributes>)?

(WHITHIN time window)?

The WHERE clause expects a pattern written in Complex Event Logic (CEL) [8].

CEL is a formal logic built on top of the common operators of the literature

of CER, whose abstract syntax is represented by the following grammar:

φ := R | φ AS X | φ FILTER X[P] | φ OR φ | φ;φ | φ+ | πL(φ).

In this grammar, R is an event type in T,X is a variable inX, P is a predicate,

and L is a subset of variables in X. We remark that CEL includes FILTER,

and so CEQL does not need a separate FILTER clause.

Semantics. The evaluation of a CEQL is as follows. First, we evaluate the

FROM clause that specifies the list of streams. If more than one stream is

specified, the evaluation algorithm will merge them into a single stream S.

Then, we (optionally) evaluate clause PARTITION BY, which partitions stream

S into multiple substreams and evaluates clauses WHERE, SELECT, WITHIN

on each substream in that order. Note that the evaluation of each substream

could be executed in parallel. The semantics of WHERE-SELECT clauses is

derived from the semantics of CEL in Figure 3.2. A CEL formula φ evaluates

to a set of valuations, denoted VφU(S). Specifically,

• R. Evaluates to the valuation VRU(S) whose time interval and data is

a single event R at position i in stream S.

• φ AS X. Corresponds to a variable assignment. It extends a valuation

V ∈ VφU(S) by mapping X → ⋃
Y V (Y).

• φ FILTER X[P]. Evaluates to a valuation ([i, j], µ) ∈ VφU(S) such

that all variables X ∈ µ satisfy predicate P .

• φ1 OR φ2. Evaluates to the union of the valuations Vφ1U(S) and Vφ2U(S).

• φ1;φ2. Evaluates to all pairs of valuations such that the first element

happens before the second element in the stream.

Chapter 3 Preliminaries 15

VRU(S) = {V | V (time) = [i, i] ∧ ti(type) = R

∧ V (R) = i ∧ ∀X ̸= R.V (X) = ∅}
Vφ AS XU(S) = {V | ∃V ′ ∈ VφU(S).V (time) = V ′(time)

∧ V (X) = ∪Y V ′(Y)

∧ ∀Z ̸= X.V (Z) = V ′(Z)}
Vφ FILTER X[P]U(S) = {V | V ∈ VφU(S) ∧ V (X) ⊨ P}

Vφ1 OR φ2U(S) = Vφ1U(S) ∪ Vφ2U(S)
Vφ1 ; φ2U(S) = {V | ∃V1 ∈ Vφ1U(S), V1 ∈ Vφ2U(S).

V1(end) = V2(start)

∧ V (time) = [V1(start), V2(end)]

∧ ∀X.V (X) = V1(X) ∪ V2(X)}
Vφ+U(S) = VφU(S) ∪ Vφ;φ+U(S)

VπL(φ)U(S) = {V | ∃V ′ ∈ VφU(S).V (time) = V ′(time)

∀X ∈ L.V (X) = V ′(X)

∀X /∈ L.V (X) = ∅}

Figure 3.2: The semantics of CEL.

• φ+. Evaluates to the union of one or more times of the valuation

Vφ(S)U.

• πL(φ). Evaluates to the valuation Vφ(S)U such that all variables that

are not in L map to the empty set.

Note, SELECT clause corresponds to a projection in CEL. Finally, the (op-

tional) clause WITHIN filters the set of valuations returned by the WHERE-SELECT

clauses such that Vφ WITHIN ϵU(S) = {V ∈ VSU | V (end)− V (start) ≤ ϵ}.

Complex event semantics. Recall that CER systems operate under com-

plex event semantics. However, above we defined CEQL semantics in terms

of valuations. We can recover complex events semantics by forgetting the

variables in the valuations. That is, if φ is a CEL formula, its complex event

semantics JφK(S) is defined as JφK(S) := {CV | V ∈ VφU(S)}.

Chapter 3 Preliminaries 16

3.4 Selection strategies

Selection strategies (or selectors) are unary operators over CEL formulas that

restrict the set of results and speed up query processing. We present four

selection strategies [8, 9]: strict (strict), next (nxt), last (last) and max

(max). Next, we describe and formally specify selection strategy max, as it is

relevant in our work, and refer the interested reader to [9] for a definition and

discussion of the other selection strategies. For the sake of the discussion, we

will define the support of a valuation V as the set of all positions appearing

in the range of V , i.e., sup(V) =
⋃

X∈X
V (X).

MAX. This selection strategy keeps the maximal complex events in terms

of set inclusion, which could be naturally more useful because these complex

events are the most informative. Formally, given a CEL formula φ we say

that V ∈ Vmax(φ)U(S) holds iff V ∈ VφU(S) and for all V ′ ∈ VφU(S), if
sup(V) ⊆ sup(V ′), then sup(V) = sup(V ′) (i.e., V is maximal with respect

to set containment). For example, given a CEL query φ, if VφU(S) returns

{1, 2, 4}, {1, 3, 4}, and {1, 2, 3, 4}. Then, max(φ) will only return {1, 2, 3, 4},
which is the maximal complex event.

3.5 Computational model

We introduce the computational model Complex Event Automaton (CEA)

[8], which is a form of finite automaton that produces complex events. We

introduce CEA by means of an example.

Example 3.2. In this example we show the compilation of the query from

Figure 3.1 into an equivalent CEA A. There are three states in this automa-

ton q1, q2, and q3. The initial state is q1 and the final state is q3. There can

only be one initial state but multiple final states. The transitions contain a

set of predicate P and a marking symbol m := {•, ◦}. We depict predicates

by listing, in array notation, the event type, and the constraint on the temper-

ature attribute. A transition is only traversed if the input event satisfies the

predicates in P.

Chapter 3 Preliminaries 17

q1CEA A :CEA A : q2 q3

[
T

<30

]
|•

[
T

>30

]
|•

TRUE |◦

[
T

>30

]
|•

TRUE |◦

Stream S:
[
T
0
24

] [
T
0
32

] [
T
0
40

] [
T
0
45

] [
T
0
60

]
· · ·

Figure 3.3: A CEA representing the query from Figure 3.1 and an exam-
ple of stream.

A run of A over the stream S from position i to j corresponds to the sequence

ρ := qi
Pi/mi−−−→ qi+1

Pi+1/mi+1−−−−−−→ . . .
Pj/mj−−−→ qj+1. A run ρ is accepting if qj+1 is a

final state. An accepting run defines the complex event Cρ := ([i, j], {k | i ≤
k ≤ j ∧ mk = •}). The figure also includes an example stream S, where the

values correspond to the event type, the identifier attribute, and the tempera-

ture attribute, in that order.

As explained in Section 3.3, evaluating a CEQL query corresponds to evaluat-

ing the query’s SELECT-WHERE-WITHIN clauses. The usefulness of CEA comes

from the fact that unary CEL can be translated into an equivalent CEA [8, 9].

Because the SELECT-WHERE part of a CEQL query is in essence a CEL for-

mula, this reduces the evaluation problem of the SELECT-WHERE-WITHIN part

of CEQL query into the evaluation problem for CEA. Consequently, the eval-

uation algorithm is then defined in terms of CEA: it takes as input a CEA A,
the time-window ϵ specified in the WITHIN clause, and a stream S, and uses

this to compute JφK(S). We remark that the evaluation algorithm requires

that the input CEA A is I/O deterministic: an event t may trigger at most

two transitions at the same time only if one transition marks the event, but the

other does not. In [8, 9], it was shown that any CEA can be I/O-determinized,

with a possibly exponential blow-up in the size of the automaton.

Chapter 3 Preliminaries 18

3.6 Timed Enumerable Compact Set

The data structure that lazily represents the set of partial matches in CORE

is called timed Enumerable Compact Set (tECS). A tECS is a directed acyclic

graph (DAG) E with two types of nodes: union nodes and non-union nodes.

Union nodes have two children: left and right. Non-union nodes are la-

belled by a stream position and are divided in output nodes and bottom nodes.

The former have exactly one child and the latter have none. To simplify pre-

sentation in what follows, we write nodes of any kind as n, bottom, output

and union nodes as b, o, u, respectively, and we denote the sets of bottom,

output and union nodes by NB, NO and NU , respectively.

For a node n, define its descending-paths, denoted paths(n), recursively as

follows: if n is a bottom node, then paths(n) = 1; if n is an output node, then

paths(n) = paths(next(n)); if n is a union node, paths(n) = paths(left(n))

+ paths(right(n)). Every node n carries paths(n) as an extra label; thus

the descending-paths can be retrieved in constant time. The descending-paths

attribute is going to be used during the enumeration phase of the distributed

evaluation algorithm to balance the workload of each processing unit.

An open complex event, denoted (i,D), is a complex event ([i, j], D), where

the closing event j hasn’t been reached yet. A tECS represents sets of open

complex events. Let p̄ = n1, n2, . . . , nk be a full-path in E such that nk is a

bottom node. Then p̄ represents the open complex event Jp̄KE = (i,D), where

i = pos(nk) is the label of bottom node nk and D are the labels of the other

non-union nodes in p̄. Given a node n in E , JnKE is the set of open complex

events represented by n and consists of all open complex events Jp̄KE with p̄ a

full-path in E starting at n.

In order to enumerate the set of complex events JnKE(j), one by one, without

duplicates, and with output-linear delay, it will be necessary to impose three

restrictions on the structure of the tECS E .

Time-ordered. Define the maximum-start of a node, denoted max(n), as

max(n) = max(i | (i,D) ∈ JnKE). Then, a tECS is time-ordered if for every

union node u it holds that max(left(u)) ≥ max(right(u)). This restriction

prevents traversing paths that our outside the time window.

Chapter 3 Preliminaries 19

u

n1 n2

(a)

u

n1 n2

(b)

u

u1

u2

l(n2) r(n2)r(n1)l(n1)

(c)

u

u1

u2

l(n2) r(n2)r(n1)l(n1)

(d)

Figure 3.4: Visualisation of the four cases of method union(u).

k-bounded. Define the output-depth of a node, denoted odepth(n), as: if n is

a non-union node, then odepth(n) = 0; otherwise, odepth(n) = odepth(left(n))+

1. E is k-bounded if odepth(n) ≤ k for every node n. This restriction preserve

the output-liner delay because it bounds the maximum number of union nodes

between two non-union nodes.

Duplicate-free. A tECS E is duplicate-free if for every node n and for every

pair of distinct full-paths p̄ and q̄ that start at n holds that Jp̄KE ̸= Jq̄KE . This
restrictions prevents duplicated outputs.

We define three operations on E . In order to ensure that newly created nodes

are 3-bounded, we require that the argument nodes of these operations are

safe. A node is safe if it is a non-union node or if both odepth(u) = 1 and

odepth(right(u)) ≤ 2. All three operations on tECS return safe nodes.

b ← new-bottom(i). This method adds a new bottom node b labelled by

i ∈ N to E .

o← extend(n, j). This method adds a new output node o to E with pos(o) = j

and next(o) = n.

u ← union(n1, n2). This method returns a union node u such that JuKE =

Jn1KE ∪ Jn2KE . If n1 is a non-union then a new union node u is created which

is connected to n1 and n2 as shown in Figure 3.4a. If n2 is a non-union node,

then u is created as shown in Figure 3.4b. When n1 and n2 are union nodes: if

max(right(n1)) ≥ max(right(n2)), three new union nodes, u, u1, u2 are added

and connected as show in Figure 3.4c; otherwise, as in Figure 3.4d.

Note, all these methods take constant time.

Chapter 3 Preliminaries 20

Remember that the ultimate purpose of constructing a tECS E is to be able to

enumerate the set JAKϵj(S) at every position j. If E is time-ordered, k-bounded

for k = 3, and duplicate-free, then Theorem 3.1 ensures that we enumerate

set JAKϵj(S).

Theorem 3.1. Let E be a time-ordered tECS, n a duplicate-free node of E, ϵ
a time-window, P the set of all processes. Let Cp be the output of Algorithm 2

on process p ∈ P. Then, ⋃
P∈P

CP = JnKϵE(j).

In Section 5.3, we describe Algorithm 2, and show its correctness.

3.7 Auxiliary data structures

In this section, we introduce two auxiliary data structures that are going to

be used to incrementally maintain E during the recognition process.

Union-lists and its operations. A union-list is a non-empty sequence of

safe nodes, denoted ul = n0, n1, . . . , nk such that n0 is a non-union node,

max(n0) ≥ max(ni), and max(ni) > max(ni+1) for every 0 < i ≤ k. We define

three operations on union-lists.

ul← new-ulist(n). This method creates a union-list with a single non-union

node n.

insert(ul, n). This method mutates, in situ, the union-list ul = n0, . . . , nk by

inserting a safe node n such that max(n) ≤ max(n0). If there is a i > 0 such

that max(ni) = max(n), then it replaces ni in ul by the result of union(ni, n).

Otherwise, we consider two cases: if max(n) = max(n0), then n is inserted

after n0; otherwise, n is inserted between ni and ni+1 with i > 0 such that

max(ni) > max(n) > max(ni+1).

u← merge(ul). This method takes a union-list ul and returns a node u such

that JuKE = Jn0KE ∪ . . .∪ JnkKE . If k = 0, then u = n0, or else, we add k union

nodes to E , and connect them.

We remark that all operations on union-lists take time linear in the length of

ul.

Chapter 3 Preliminaries 21

Hash table and its operations. A hash table is an abstract data structure

that maps keys to values by the use of a hash function. During the evaluation

of the algorithm, we will use a hash table to map CEA states to nodes of

union-lists. We define two methods on hash tables.

keys(T). The first method returns the set of states q that have a union-list

associated with.

ordered-keys(T). The second method returns keys(T) as a list sorted in

the order in which keys have been inserted into T . If a key is insert multiple

times, then it is the time of the first that is used for sorting.

We assume that hash table lookups and insertions take constant time, and

iterating over has constant delay.

3.8 Chapter summary

In this chapter we have presented the preliminary work that is required for our

work. First, we introduced the concept of distributed computing. Then, we

described the syntax and semantics of CEQL and CEL. Afterwards, we pre-

sented the selection strategies, and explained the semantics of max. Then, we

introduced the computational model CEA, which is used to evaluate CEQL.

Finally, we introduced the data structures used in the evaluation algorithm.

Chapter 4

Distributed CER

In this chapter we propose a novel framework for distributed CER based on the

following observation: given the efficient evaluation of CEA in a centralized

manner [9, 3], it is hard to foresee scenarios where it can benefit from distribu-

tion. Indeed, both automata distribution approaches (i.e., query partitioning

and pipelining) will incur a big overhead in terms of network communica-

tion during the evaluation process to synchronize the compact data structure

representing the partial matches, and the enumeration process. However, as

previously discussed, CEA is very limited in terms of filtering capabilities,

allowing only unary predicates. Thus, one might wonder how to include the

evaluation of more complex filters over non-unary predicates such as binary

predicates (e.g., equi-joins like h1[id] = t2[id]), or second-order predicates

(e.g., the sequence of T[val] must monotonically increase). In [10], it is dis-

cussed that CEL and CEA are equivalent in expressive power when CEL is

restricted to unary predicates, but incomparable in general. Thus, non-unary

CEL, in general, cannot be compiled into an equivalent CEA. However, one

could split the pattern matching process and the filtering in CER. In other

words, we would maintain the generation of complex events in CEA, but lever-

age on a distributed framework for complex filtering.

4.1 Distributed CER framework

In this section, we describe our proposal of a framework for distributed CER

(see Figure 4.1). Our framework uses CEQL as its query language, allowing

22

Chapter 4 Distributed CER 23

Q

Q

Q → ⟨QFO,PSO⟩

QFO → A

S JAK(S)

JAK(S) |= PSO

Complex events

parse

rewrite

compilation

evaluation

refine

Notation
Q : CEQL query (text)
Q : CEQL query (AST)
QFO: Unary CEQL
PSO : Second-order predicates
S : Stream of data-tuples
A : CEA

Figure 4.1: Distributed CER framework.

n-ary CEL predicates inside the WHERE clause. It receives a stream of data-

tuples S and a query Q as text. The query is parsed using a context free

grammar parsing algorithm (e.g., Earley’s algorithm [33]). The rewrite algo-

rithm is applied to the resulting abstract syntax tree of the query Q. The

rewrite algorithm translates the non-unary CEL predicate of a CEQL query

into a unary CEL predicate QFO, and a data structure encoding the corre-

sponding non-unary predicates PSO to be applied later. The resulting unary

CEQL query QFO is compiled into a CEA A by [9, Theorem 6.2]. Then,

this CEA is evaluated by the efficient evaluation algorithm presented in [3],

which takes, under data complexity, constant time per input event to maintain

a data structure representing the set of partial complex events. Notice, the

result of this evaluation JAK(S) is not yet a valid output since we still need to

apply the FILTER clause for the non-unary predicates. The refine algorithm

is applied distributedly to the set of complex events JAK(S). The refine algo-

rithm uses the non-unary predicates PSO to filter the set of complex events

Chapter 4 Distributed CER 24

(denoted as JAK(S) |= PSO in Figure 4.1). Finally, the set of complex events

corresponding to the input query is enumerated.

Note. Due to time constraints, we implemented a limited rewrite and refine

algorithm which considers specific kind of queries. Implementing a generic

rewrite and refine algorithm is outside of the scope of this thesis and it is left

for future work.

It is clear that the refine algorithm has to be applied distributedly in or-

der to achieve optimal scalability and performance. However, there are still

two relevant decisions left: where do you compile and process the CEA and

how do you distribute the resulting complex events among the processing

units. We propose two different architectures that take different approaches

to previous questions. The first architecture, called Distributed CER Engine

(DCERE for short), compiles and executes the CEA in a centralized manner

and distributes the resulting complex events to each processing unit. The

second architecture, called Distributed CORE (DCORE for short), broadcast

the events, and compiles and executes the CEA on each processing unit. We

remark that implementing the latter is more challenging than implementing

the former. For the former, we could use any state-of-the-art sequential eval-

uation algorithm (e.g. [9], or [3]). However, the latter requires an efficient

distributed evaluation algorithm for CEA, that to the best of our knowledge,

is yet to be outlined.

The rest of this chapter is dedicated to explaining in detail both alternatives.

4.2 Distributed CER Engine

In this section we discuss Distributed CER Engine (DCERE), an implemen-

tation of the framework proposed in Section 4.1. This implementation (il-

lustrated in Figure 4.2) is built on top of a distributed actor model. We

emphasize that actor models can be used to either encode parallelism by con-

sidering each core of a processor as an actor, or distributed programming by

considering each processing unit in the network as an actor. Indeed, in the

implementation from Chapter 6, we consider as many actors as the product of

the number of processing units in our cluster by the number of cores of each

processor.

Chapter 4 Distributed CER 25

Master

⟨S,Q⟩→A
A→C

. . .Slave 2

C2⊨P
Slave 1

C1⊨P
Slave n

Cn⊨P

⟨S,Q⟩ Complex
Events

C1 ⊆ C C2 ⊆ C Cn ⊆ C

C′
1 ⊆ C

C′
2 ⊆ C

C′
n ⊆ C

Figure 4.2: Distributed CER Engine architecture.

We will differentiate between two roles of actors: master actors and slave ac-

tors. There will be a single master actor in the cluster, and as many slave

actors as processing units left. The master actor will act as the leader of

the cluster and will orchestrate the rest of the slave actors. The master ac-

tor receives a stream of data-tuples and a query as an input. It parses and

rewrite the input query to unary CEL. Then, it compiles the query to CEA,

and evaluate it to retrieve the corresponding set of complex events. For the

compilation and evaluation, we will use CORE [3] which guarantees constant

update of the data structure and output-linear delay enumeration. Then, we

apply one of the selection strategies (explained below) to distribute the set of

complex events among the slave actors. Asynchronously and independently,

each processing unit receives its corresponding subset of complex events and it

applies the refine algorithm to the complex events. Afterwards, once the refine

algorithm is finished, the actor returns the resulting subset of complex events

to the master node. Finally, once the master has received the output of all

processing units, it executes the configured response (e.g., write the complex

events to disk, send an email, activate an alarm).

4.2.1 Distribution Strategies

In this section we describe the distribution strategies used by DCERE to dis-

tribute the set of complex events among the set of actors on the distributed sys-

tem. We have considered distribution strategies ranging from load-balancing

algorithms to stream partitioning algorithms. Additionally, we have proposed

our own novel distribution strategy specific to the distribution of complex

Chapter 4 Distributed CER 26

events, called Maximal Complex Event Enumeration (MCEE). We empiri-

cally compare the proposed selection strategies in Chapter 6. Furthermore,

the interested reader may find the algorithms in Appendix A.2.

Round Robin. Round Robin (RR) is the most basic load-balancing strategy.

It consist of blindly routing the complex events to the actors in a circular

fashion. Although simple, it works well in practice.

Power of Two Choices. The Power of Two Choices (PoTC) [34] is a

randomized load balancing algorithm introduced in queue theory. Given n

actors, for each each complex event, we randomly pick d actors. Finally,

from those d choices, we pick the one with lowest workload. Surprisingly,

having d = 2 choices leads to an exponential improvement in the load-balance,

whereas d > 2 choices is only constant factor better than d = 2.

Exact Search. Exact Search (ES) is a load balancing algorithm equivalent

to PoTC when d = n. This distribution strategy was designed taking into

account that computing the static load of an actor is cheap, while computing

the dynamic load is not. Therefore, for each complex event, we query the

static load in constant time of all the actors of the system, and send the

complex event to the actor with lowest workload.

Maximal Complex Event Enumeration. Maximal Complex Event Enu-

meration (MCEE) is a load balancing algorithm specific to CER. The idea

behind Mcee is to take advantage of the selection strategy max to retrieve

only the maximal complex events that are the most informative, distribute

them, and retrieve all complex events included in the maximal complex events.

One of the challenges of this approach is the choice of an algorithm to dis-

tribute maximal complex events. In the absence of disjunctions or iterations

in a query, queries produce few maximal complex events. Hence, enumerat-

ing and filtering whole maximal complex events in single nodes will incur in

skewness in the load balance, which degrades performance. Another challenge

of this approach is finding the way to avoid duplicated outputs. Example 4.1

illustrates this problem.

Example 4.1. We continue our example of detecting fires in a warehouse to

illustrate that a naiv̈e implementation based on Mcee generates duplicates.

Given a query Q with pattern (T+; H+) and stream S = {T1, H1, T2, H2}.
Query Q evaluated under selection strategy max over stream S produces the

following complex events: {T1, H1, H2}, and {T1, T2, H2}. The first maximal

Chapter 4 Distributed CER 27

complex event includes complex events: {T1, H1}, {T1, H2}, and {T1, H1, H2}.
The second maximal complex event includes: {T1, H2}, {T2, H2}, and {T1, T2, H2}.
Notice, complex event {T1, H2} has been outputted twice.

A priori, this distribution strategy seems to increase the performance of the

recognition process: (1) the automata enumerates a smaller set of complex

events, (2) less data has to be sent through the network incurring in a smaller

communication overhead, and (3) the possibly exponential cost of the enumer-

ation is distributed among the n − 1 slaves nodes. However, under in-depth

analysis, (1) and (3) do not hold:

(1). Theorem 7.2 [9] shows that the compilation of the selection strate-

gies has an exponential blow-up in the size of the automaton. In other

words, the number of states and transitions increases exponentially re-

sulting in a larger evaluation time for CEA.

(3). To guarantee duplicate-free results the algorithm needs to enumer-

ate all complex events, including the duplicated ones, and them. This

incurs, per complex event, in a linear factor overhead in the size of the

complex event that undermines the gains from the distribution.

For completeness, we implemented this selection and empirically verified our

hypothesis that this strategy does not perform well in practice.

4.3 Distributed CORE

In this section we discuss Distributed CORE (DCORE), an implementation

of the framework proposed in Section 4.1. This implementation (illustrated

Figure 4.3) is also built on top of a distributed actor model, but the master

actor plays a secondary role. It is only used to retrieve the complex events

from the rest of the slave actors in order to execute the configured response.

Indeed, if the response can be executed on the slaves actors (e.g., writing to an

output stream), then the master actor can be removed from the system. We

assume that the system can duplicate the input data. Otherwise, assume that

the master node receives as an input a stream and a query, and broadcasts

them to the rest of the actors.

Chapter 4 Distributed CER 28

Master

. . .
Slave 2

⟨S,Q⟩→A
A→C′

2

Slave 1

⟨S,Q⟩→A
A→C′

1

Slave n

⟨S,Q⟩→A
A→C′

n

⟨S,Q⟩ Complex
Events

⟨S,Q⟩ ⟨S,Q⟩ ⟨S,Q⟩

C′
1 ⊆ C

C′
2 ⊆ C

C′
n ⊆ C

Figure 4.3: Distributed CORE architecture.

The following steps are all execute asynchronously and independently on each

node of the distributed system, and there is no communication between the

nodes throughout this process. Each node in the system: receives an input

stream and a query, parses and rewrites the input query to unary CEL, com-

piles the query to CEA, and finally evaluates the CEA, applies the refine

algorithm and enumerates the resulting complex events.

In this implementation, the refine algorithm is executed at the same time

as the enumeration process (corresponding to A → C ′
1 in Figure 4.3), not

requiring an additional traversal of the complex events. In other words, the

output of the evaluation algorithm is already the output corresponding to the

complex events captured by our query.

We emphasize that our system needs to evaluate, filter and enumerate disjoint

subsets of complex events; otherwise, this implementation would be equivalent

to a sequential version, but slower. For this reason, we require an efficient

distributed evaluation algorithm for CEA. But, as far as we are concerned,

such an algorithm does not exist. For this reason, we devote Chapter 5 to the

design of such an algorithm.

4.4 Chapter summary

In this chapter we presented a framework for distributed CER. Then, we dis-

cussed how a distributed framework for automaton-based CER would look

like, and described our proposal for such a framework. Later, we introduced

Chapter 4 Distributed CER 29

DCERE, an implementation of our framework and described several distribu-

tion strategies. Finally, we introduced DCORE, another implementation of

our framework, and motivated the search for a distributed evaluation algo-

rithm for CEA.

Chapter 5

Distributed evaluation

algorithm

In this chapter, we propose a distributed algorithm for CER. This algorithm

uses CEA as its computational model. In particular, the algorithm incre-

mentally computes at every position j in the stream S the set JAKϵj(S) :=

{C | C ∈ JAKϵ(S)∧C(end) = j} where A is a I/O-deterministic CEA, and ϵ a

time window. We remark that our algorithm is an extension of the evaluation

algorithm from CORE [3]. Our contributions are the distributed enumera-

tion phase of this algorithm and the proofs of correctness of the distributed

evaluation. The rest of the chapter is structured as follows. First, we show

a high-level description of the algorithm. Then, we describe the evaluation

algorithm and discuss its complexity. Finally, we describe in detail the enu-

meration phase of the algorithm and show its correctness. We conclude with

a summary of the main points discussed in this chapter.

5.1 The distributed algorithm

The evaluation algorithm is executed on a distributed system composed by

independent processes P . The processes do not share a global memory and

communicate solely by passing messages. Each asynchronous process incre-

mentally updates a data structure that compactly represents partials outputs.

Whenever a new tuple arrives, it takes constant time (in data complexity

[35]) to update the compact data structure. Moreover, the distributed system

30

Chapter 5 Distributed evaluation algorithm 31

may enumerate cooperatively without message passing, at each position j, the

complex events of JAKϵj(S), one by one, and without duplicates. During the

enumeration, each process enumerates at most
|JAKϵj(S)|

|P| complex events with

output-linear delay after printing the first complex event. This means that

the time required to print the following complex events is linear in the size of

the complex event being printed. We remark that our algorithm is asymptot-

ically optimal: any evaluation algorithm needs to inspect every input event

and enumerate the query’s answers.

It might seem suboptimal to have all processes evaluating the CEA and up-

dating the data structure. Surprisingly, we show that it is not the case. We

describe an alternative implementation, where the CEA and the compact data

structure is only evaluated in one of the processes, and show that our imple-

mentation is asymptotically equivalent. The algorithm is as follows: we assign

a process (e.g. P1) to ingesting events and updating the data structure repre-

senting the partials outputs. Once a complex event is found, we distribute the

data structure among the rest of the processes and enumerate the complex

events on each. If implemented in a näıve way, the update algorithm may

take linear time (instead of constant time), because distributing the tECS

takes time proportional to its size which is linear in the size of the stream.

However, if the distribution of the tECS is done incrementally on each input

tuple, then each process will need to keep a copy that has to be incrementally

updated and it would take, at least, constant time to update this copy. Fur-

thermore, each process will need to keep all the auxiliary data structures used

in the evaluation of the CEA. We emphasise that this alternative algorithm is

asymptotically equivalent to our algorithm. In fact, our algorithm performs

better in practise because it requires no communication among the processes.

5.2 The evaluation algorithm

In this section, we present the evaluation algorithm. It receives as input a

I/O deterministic CEA A = (Q,∆, q0, F), a stream S, and time-window ϵ

and may enumerate, on process p, a subset of JAKϵj(S) at every position j. We

remark that when the evaluation Algorithm 1 is executed simultaneously on

each process p ∈ P , it may enumerate the set JAKϵj(S) at every position j.

Chapter 5 Distributed evaluation algorithm 32

Algorithm 1: Evaluation of an I/O-deterministic CEA A = (Q,∆, q0, F)
over a stream S given a time-window ϵ on a process p.

1 procedure Evaluation(A, S, ϵ, p)
2 j ← −1
3 T ← ∅
4 while t← yield(S) do
5 j ← j + 1
6 T ′ ← ∅
7 ul←new-ulist(new-bottom(j))
8 ExecTrans(q0, ul, t, j)
9 for p ∈ ordered-keys(T) do

10 ExecTrans(p, T [p], t, j)
11 T ← T ′

12 Output(j, ϵ, p)
13

14 procedure ExecTrans(p, ul, t, j)
15 n← merge(ul)
16 if q ← ∆(p, t, •) then
17 n’← extend(n, j)
18 ul’← new-ulist(n’)
19 Add(q, n’, ul’)
20 if q ← ∆(p, t, ◦) then
21 Add(q, n, ul)
22

23 procedure Add(q, n, ul)
24 if q ∈ keys(T ′) then
25 T ′[q]← insert(T ′[q], n)
26 else
27 T ′[q]← ul
28

29 procedure Output(j, ϵ, p)
30 for p ∈ keys(T) do
31 if p ∈ F then
32 n← merge(T [p])
33 Enumerate(n, ϵ, j, p)

Algorithm 1 consist of four procedures: Evaluation, ExecTrans, Add,

and Output. The algorithm maintains a tECS E representing the set of

open complex and a hash table with the set of active states of CEA A to

enumerate at any position j a subset of JAKϵj(S). The reader may find it

helpful to refer to Figure 5.1, which illustrates how Algorithm 1 evaluates the

CEA A of Figure 3.3 over the stream S of Figure 3.3.

Procedure Evaluation receives a I/O-deterministic CEA A, a stream S,

a time window ϵ, and the identifier p of the processing unit executing the

algorithm. The variables T and T ′ corresponds the activate states of CEA A

Chapter 5 Distributed evaluation algorithm 33

01

01

q2

S[0]

01

01

11q2

q3

S[1]

01

01

11

21

21q2

q3

S[2]

01

01

11

21

21

∨2

∨3

33

31q2

q3

S[3]

01

01

11

21

21

∨2

∨3

33

31

∨6

∨7

47

41q2

q3

S[4]

Figure 5.1: Illustration of Algorithm 1 on the CEA A and stream S of
Figure 3.3. The tECS is denoted in black, the attribute paths of each node
is coloured red, and the hash table T that links the active states to union-

lists is illustrated in blue.

in position j− 1 and j, respectively. The actives states are implemented with

the hash table described in Chapter 3. T and T ′ link actives states of CEA

A to union-lists, which are used to update the tECS E . The procedure starts

initialising the current position on the stream j and the hash table T . Assume

that yield(S) returns the next data-tuple t in the stream S. The while on

lines 4-12 is executed for every data-tuple t in the stream. First, we update the

current position. Then we initialise the hash table T ′ of active states at current

iteration. At line 7-8, because a new complex event can start at any position in

the stream, create a new union-list ul with a single bottom node j and execute

all transitions from initial state q0 using procedure ExecTrans. Then, for

every active state p in previous iteration j−1, we execute all transitions using

procedure ExecTrans. We anticipate that procedure ExecTrans updates

the tECS for every marking transition in A and also updates the set of active

states T ′. Finally, we update the previous active states T and we execute

Output to enumerate some of the complex events represented by the tECS

E .

Procedure ExecTrans receives active state p, a union list ul, and the current

tuple t at position j. At line 15 we merge the union-list ul into a single node

n that encodes all open complex events of active runs that reached p. At

line 16 and 20 we test all transitions of CEA A at state p. Notice, because A
is I/O-deterministic, there can be at most two transitions, one marking and

Chapter 5 Distributed evaluation algorithm 34

the other non-marking, for each state that satisfy predicate P. If there is a

marking transition from p to q that satisfy predicate P for tuple t, then we

extend n by position j and update E (lines 17-19). If there is a non-marking

transition from p to q that satisfy predicate P for tuple t, then we update the

activate states in A (line 21). Notice, that the non-marking transition is not

extending the tECS.

Procedure Add adds open complex events represented by node n to T ′[q]. If

we have already reached q on iteration j (line 24), then we insert n at union

list T ′[q] (line 25). Otherwise, we initialise the entry q of T ′ with the union-list

representation of n (line 27).

The procedure Output enumerates a subset of all complex events in JAKϵj(S)
at process p. The method is called at line 12, when T contains all active states

at position j. We iterate over all active states p ∈ keys(T) (line 30) and check

if p is a final state (line 31). If the state is final, we merge the union list T [p]

into a node n in E and call Enumerate(E , n, ϵ, j, p) where Enumerate is

the algorithm of Theorem 3.1 described in Section 5.3.

This concludes the presentation of Algorithm 1. Now, we analyse its complex-

ity. When a new tuple arrives, Algorithm 1 updates T , T ′, and E by means of

methods in Section 3.6 and 3.7 which either take constant time or linear time

with respect to the size of the union-list. For every position j, the length of

every union list is bounded by the number of active states (see Appendix B.3

from [3]). Then, because we iterate over all transitions in the worst case

(line 9), and executing a transition takes time proportional to the length of

the union-list, which is at most the number of states, we may conclude that

the time for processing a new tuple is O(|Q| · |∆|), which is constant under

data complexity.

Finally, we analyse its correctness. Because Algorithm 1 builds E only through

the methods of Section 3.6 and 3.7, we guarantee that it is 3-bounded and

time ordered. Moreover, we can show that, because A is I/O deterministic,

E will also be duplicate-free. From this, we can derive the correctness of

Algorithm 1.

Theorem 5.1. After the j-th iteration of Evaluation, the union of the

Output procedure on each process p ∈ P enumerates the set JAKϵj(S) with

output-linear delay after enumerating the first complex event.

Chapter 5 Distributed evaluation algorithm 35

The proof of Theorem 5.1 is technical and the reader may find it in its original

publication [3].

5.3 The Enumeration procedure

We provide Algorithm 2 corresponding toEnumereate from Algorithm 1 and

show that: (1) it enumerates a subset of complex events S ⊆ JnKϵE(j) where

|S| = O(JnKϵE(j))
|P|), and (2) it does so with output-linear delay after reaching the

first complex event. Furthermore, we prove Theorem 3.1 to show that (3) the

union of the enumeration of Algorithm 2 on each process P ∈ P corresponds

to JnKϵE(j).

We next describe how Algorithm 2 works. During the description, the reader

may find it helpful to refer to Figure 5.2, which illustrates how Algorithm 2

enumerates the tECS E of Figure 5.1. In particular, how complex events

J4KϵE(j) are enumerated by distributing the workload on each process. As-

suming |P| = 3, each subfigure depicts the enumeration of the paths assigned

to each process. The tECS is denoted in black, the attribute paths of each

node in red, and the traversed paths in green. Notice, each process traverses

different paths but all paths are traversed at the end.

Algorithm 2 uses a stack st with common stack operations: new-stack() to

create an empty stack, push(st, e) to add an element e at the top of the

stack, and pop(st) to remove and return the element on the top of the stack.

When the stack is empty, we will interpret e← pop(st) as false. We assume

that stack operations can be performed in constant time.

Recall that E encodes the DAG GE = (N,E) where N are the vertices, and

E the edges that go from any union node u to left(u) and right(u), and from

any output node o to next(o). For every node n′ ∈ N , let paths≥τ (n
′) be all

paths of GE that start at n′ and end at some bottom node b with pos(b) ≥ τ ,

and paths≥τ,σ,δ(n
′) be a subset of paths≥τ (n

′) of size at most δ starting after

path πσ, where πσ is the σ-th path from E starting at node n′ such that

0 ≤ σ ≤ |paths(n′)|. It is clear that there exists an isomorphism between

JnKϵE(j) and paths≥j−ϵ(n) i.e. for every complex event within a time window

of size ϵ there exists exactly one path that reaches a bottom node b with

pos(b) ≥ j − ϵ, and vice versa. Formally,

Chapter 5 Distributed evaluation algorithm 36

Algorithm 2: Enumeration of paths≥τ,σ,δ(n).

1 procedure Enumerate(E , n, ϵ, j, p)
2 δ ← ⌈paths(n) / |P|⌉
3 σ ← index(p) · δ
4 st ← new-stack()
5 τ ← j − ϵ
6 if max(n) ≥ τ then
7 push(st,⟨n, ∅, σ, δ⟩)
8 while (n′, P, σ′, δ′)← pop(st) do
9 while true do

10 if n′ ∈ NB then
11 output([pos(n′), j], P)
12 break

13 else if n′ ∈ NO then
14 P ← P ∪ pos(n′)
15 n′ ← next(n′)
16 else if n′ ∈ NU then
17 if max(right(n′)) ≥ τ then
18 if paths(left(n′)) > σ′ then
19 δ′′ ← δ′ −max(0, paths(left(n′))− σ′)
20 else
21 δ′′ ← δ′

22 σ′′ ← max(0, σ′ − paths(left(n′)))
23 if paths(right(n′)) > σ′′ ∧ δ′′ > 0 then
24 push(st, ⟨right(n′), P , σ′′, δ′′⟩)
25 if paths(left(n′)) > σ′ then
26 n′ ← left(n′)
27 else
28 break

Theorem 5.2 (JnKϵE(j)←→ paths≥j−ϵ(n)). For every complex event within a

time window of size ϵ there exists exactly one path that reaches a bottom node

b with pos(b) ≥ j − ϵ, and vice versa.

We defer the proof of Theorem 5.2 to Appendix A.1 to avoid disrupting the

flow of the discussion.

Algorithm 2 receives as an input a tECS, a node n, a time-window ϵ, a position

j, and a process p and traverses a fraction of GE in a DFS-way left-to-right

order. First, computes the parameters σ, δ corresponding to the starting and

ending path to enumerate, respectively. The value of these parameters can be

computed statically i.e. without message interchanging. Each iteration of the

Chapter 5 Distributed evaluation algorithm 37

01

01

11

21

21

∨2

∨3

33

31

∨6

∨7

47

41

(a) Process 0

01

01

11

21

21

∨2

∨3

33

31

∨6

∨7

47

41

01

01

11

21

21

∨2

∨3

33

31

∨6

∨7

47

41

(b) Process 1

01

01

11

21

21

∨2

∨3

33

31

∨6

∨7

47

41

(c) Process 2

Figure 5.2: Illustration of Algorithm 2 on the tECS E of Figure 5.1.

while of line 8 traverses a new path starting from the point it branches from

the previous path (except for the first iteration). For this, the stack st is used

to store the node and partial complex event of that branching point. Then,

the while of line 9 traverses through the nodes of the next path, following

the left direction whenever a union node is reached and adding the right node

to the stack whenever need. The ifs of line 23 and line 25 make sure that

enumeration starts on path πσ so only paths≥j−ϵ,σ,δ are traversed. Moreover,

by checking for every node n′ its value max(n′) before adding it to the stack,

it makes sure of only going through paths in paths≥j−ϵ.

A simpler recursive algorithm could have been used, however, the constant-

delay output might not be guaranteed because the number of backtracking

steps after branching might be as long as the longest path of GE . To guarantee

constant steps after branching and assure constant-delay output, Algorithm 2

uses a stack which allows to jump immediately to the next branch. We assume

Chapter 5 Distributed evaluation algorithm 38

that storing P in the stack takes constant time. We materialize this assump-

tion by modelling P as a linked list of positions, where the list is ordered by

the last element added. To update P with position i, we only need to create

a node i that points to the previous last element of P . Then, storing P on

the stack is just storing the pointer of the last element added.

This concludes the presentation of Algorithm 2. In the reminding of this

section, we prove properties (1), (2) and (3).

We start by proving that Algorithm 2 enumerates paths≥τ,σ,δ with output-

linear delay after reaching the starting path πσ, provided that E is k-bounded

and time-ordered and n is a duplicate-free node.

Lemma 5.3. Fix k, P and p ∈ P. Let E be a k-bounded and time-ordered

tECS, n a node of E, and ϵ a time-window. Then, Algorithm 2 enumerates

paths≥τ,σ,δ with output-linear delay after reaching the starting path πσ.

Proof. Fix E , τ , σ and δ. We first show that Algorithm 2 traverses all paths

paths≥τ,σ,δ(n). Notice, the order in which the paths are traversed is completely

determined by the order of the union nodes: for each union node u, the paths

to its left are traversed first, and then the ones to its right. Formally, for every

node n′ define the leftmost path from n′ as π↙(n′) := n0 → n1 → . . .→ nl such

that n0 = n′ and, for every i ≤ l:

• if ni ∈ NB, then i = l,

• if ni ∈ NO, then ni+1 = next(ni), and

• if ni ∈ NU , then ni+1 = left(ni).

For the first path, though, the order is different because the algorithm needs

to skip all path before πσ. Formally, for every node n′ define the leftmost path

from n′ after πσ as π↙>σ(n
′) := n0 → n1 → . . .→ nl such that n0 = n′ and,

for every i ≤ l:

• if ni ∈ NB, then i = l,

• if ni ∈ NO, then ni+1 = next(ni), and

• if ni ∈ NU and paths(ni) > σ, then ni+1 = left(ni), otherwise, ni+1 = right(ni).

Chapter 5 Distributed evaluation algorithm 39

Consider a path π := n0 → n1 → . . . → nl, and let j ≤ l be the last position

such that nj is a union node, nj+1 = left(nj), max(right(nj)) ≥ τ , and

paths(nj) > σ. Then, let πu
j be the path π up to position j i.e. that stops at

such union node.

Let P = {π1, π2, . . . , πδ} be the set of paths enumerated by Algorithm 2 in

that order. Then, by analysing Algorithm 2, one can see that π1 = π↙>σ(n)

and, for every i ≤ δ, πi = πu
i−1 · π↙(right(u)). To put it another way, after

reaching the starting path πσ, it performs a greedy DFS from left to right:

the first path to enumerate is π1 = π↙>σ(n), then each πi is the path in

paths≥τ,σ,δ(n) that branches from πi−1 to the right at the deepest level u and

from there follows the leftmost path. Moreover, to jump from πi−1 to πi, the

node popped by the stack is exactly u, that is, the last node of πu
i−1.

To show that the enumeration is done with output-linear delay after enumer-

ating the first path, we study how long it takes between enumerating the

complex events of πi−1 and πi. Consider that πi−1 was just traversed and its

complex event was output by line 11. Then, the break of line 12 is executed,

breaking the while of line 9. Afterwards, either the stack is empty and the al-

gorithm ends, or a pair (n′, P) is popped from the stack, where n′ corresponds

to the last node of πu
i−1. From that point, it is straightforward to see that

the number of iterations of the while of line 9 (each taking constant time) is

equal to the number of nodes l in π↙(n′), so those nodes are traversed and

the complex event of the path πi is output. But, because E is k-bounded,

then l ≤ k · |C|, where C is the complex event of πi. Finally, the time taken

is bounded by the size of the output, and the enumeration is performed with

output-linear delay after reaching the first path.

Then, we present Lemma 5.4 that follows from Theorem 5.2 which will be

necessary in the following proof of Theorem 5.5.

A note on notation conventions: we denote injective functions as x 7→ f(x).

Lemma 5.4 (paths≥j−ϵ,σ,δ(n) 7→ JnKϵE(j)). For every path in paths≥j−ϵ,σ,δ(n)

there exist exactly one complex event in JnKϵE(j) within a time window of size

ϵ that starts at event pos(b) and ends at event j.

Chapter 5 Distributed evaluation algorithm 40

Proof. Fix j, ϵ, σ, and δ. Let n be a node in E . Recall that paths≥j−ϵ,σ,δ(n) ⊆
paths≥j−ϵ(n). Let S := paths≥j−ϵ,σ,δ(n) be the subset of paths≥j−ϵ(n) corre-

sponding to paths≥j−ϵ,σ,δ(n). Then, by Theorem 5.2, S ⊆ JnKϵE(j). And so,

paths≥j−ϵ,σ,δ(n) 7→ JnKϵE(j).

Now, we can finally prove that Algorithm 2 enumerates a subset of JnKϵE(j) of
size O(JnKϵE(j))

|P|) with output-linear delay after the first complex event, provided

that E is k-bounded and time-ordered and n is a duplicate-free node.

Theorem 5.5. Fix k, P and p ∈ P. Let E be a k-bounded and time-ordered

tECS, n a node of E, ϵ a time-window. Then, Algorithm 2 enumerates a

subset of JnKϵE(j) of size O(
JnKϵE(j))

|P|) with output-linear delay after enumerating

the first complex event in JnKϵE(j).

Proof. Fix τ . Let δ =
|paths≥τ (n)|

|P| and σ = index(p) · δ be constants as in

Algorithm 2. By Lemma 5.3, Algorithm 2 enumerates paths≥τ,σ,δ with output-

linear delay after πσ. We need to prove that: (1) paths≥τ,σ,δ(n) corresponds

to a subset S of JnKϵE(j), (2) |S| = O(
JnKϵE(j))

|P|), and (3) it enumerates with

output-linear delay after enumerating the first complex event in JnKϵE(j).

• (1) By Lemma 5.4, immediately follows that paths≥τ,σ,δ(n) corresponds

to a subset S ⊆ JnKϵE(j).

• (2) By Lemma 5.3, Algorithm 2 enumerates the set paths≥τ,σ,δ(n) of size

at most δ, then S is of size at most
|paths≥τ (n)|

|P| . And, by Theorem 5.2, S

is at most of size
|JnKϵE(j))|

|P| .

• (3) By Lemma 5.3, Algorithm 2 enumerates with output-linear delay

after πσ ∈ paths≥τ,σ,δ(n). And, by Lemma 5.4, for every path π ∈
paths≥τ,σ,δ(n) there exists one complex event in JnKϵE(j).

To conclude, we start with Lemma 5.6 and finally prove Theorem 3.1 from

Section 3.6 corresponding to property (3).

Lemma 5.6. Let E be a time-ordered tECS, n a duplicate-free node of E, ϵ a
time-window, P the set of all processes. Let Pp := paths≥τ,σ,δ(n) be the output

of Algorithm 2 on process p ∈ P. Then, ⋃
p∈P

Pp = paths≥τ (n).

Chapter 5 Distributed evaluation algorithm 41

Proof. Fix τ and P .

Let n be a node in E . Recall that paths≥τ (n) = {π0, π1, . . . , πm} where

m = |paths≥τ (n)| and paths≥τ,σ,δ(n) = {πσ, πσ+1, . . . , πσ+δ} is a subset of

paths≥τ (n).

For every process p ∈ P , Lemma 5.3 states that Algorithm 2 enumerates

paths≥τ,σ,δ where σ and δ are variables that depend on p and P , respectively.

Let δ = ⌈ m
|P|⌉ and σ = index(p) · δ be constants as in Algorithm 2. Let P0 =

paths≥τ,0,δ(n) be the output of process 0, P1 = paths≥τ,δ,2·δ(n) be the output of

process 1, . . . , P|P|−1 = paths≥τ,(|P|−1)·δ,|P|·δ(n) be the output of process |P|−1,
i.e. process 0 enumerates {π0, . . . πδ−1} , process 1 enumerates {πδ, . . . π2·δ−1},
. . . , process (|P| − 1) enumerates {π(|P|−1)·δ, . . . , πP⌈m

P ⌉}. Then, the union of

all the outputs corresponds to the set of paths {π0, π1, . . . , π(|P|−1)mP
, πm} that

corresponds to the definition of paths≥τ (n). And so,
⋃
p∈P

Pp = paths≥τ (n).

Theorem (3.1). Let E be a time-ordered tECS, n a duplicate-free node of E, ϵ
a time-window, P the set of all processes. Let Cp be the output of Algorithm 2

on process p ∈ P. Then, ⋃
p∈P

Cp = JnKϵE(j).

Proof. Fix τ and P . For every node n in E , Lemma 5.6 states that the union

of the output of each process corresponds to paths≥τ (n). Then, we apply

Theorem 5.2, which states that there is an isomorphism between paths≥τ (n)

and JnKϵE(j), to the output of Lemma 5.6. And so, the union of the output of

each process in P corresponds to JnKϵE(j) i.e.
⋃
p∈P

Cp = JnKϵE(j).

This concludes the proofs of properties (1), (2), and (3).

5.4 Chapter summary

In this chapter we have presented an efficient distributed algorithm for evalu-

ating CEA A, and analysed its complexity and correctness.

Chapter 6

Experimental evaluation

In this chapter, we propose a set of experiments to study the performance and

scalability of both our distributed framework for CER and our distributed

evaluation algorithm. The designed experiments focus on the evaluation of

complex predicates. This chapter is organized as follows. First, we describe

our implementation. Then, we describe the design and set up of our experi-

ments, including how we generated the synthetic data and the characteristics

of the system. Then, for each experiment, we describe the experiment and

discuss the results. Finally, we summarise the main conclusions of the chapter.

6.1 DCORE in a nutshell

In this section, we review some implementation details of DCORE. We im-

plemented DCORE to run on the JVM [36]. Its code is open-source and

available at https://github.com/dtim-upc/DCORE under the GNU GPLv3

license. DCORE implementation depends on a fork of CORE. This fork im-

plements our novel distributed evaluation algorithm.

CORE. CORE is implemented in Java 11 and includes the following built-in

optimizations. Complex predicates are encoded in an efficient array represen-

tation, which are only evaluated once during the execution of the algorithm.

Regarding I/O-determinization, this is run on the fly and many of the steps

are cached and only computed once. CORE also employs advanced memory

management: nodes in the tECS data structure are weakly referenced, while

42

https://github.com/dtim-upc/DCORE
https://github.com/dtim-upc/CORE2/tree/distributed_enumeration

Chapter 6 Experimental evaluation 43

the strong references are stored in a list that is pruned once in a while taking

into account nodes that are outside of the time window, allowing the garbage

collector to reclaim that memory without the need to modify the tECS data

structure.

DCORE. DCORE is implemented in Scala 2.12 [37]. Scala [37] is a stati-

cally typed programming language that fuses object-oriented and functional

programming, which can freely interoperate with Java. DCORE is built on

top of Akka [38] (Akka Cluster in particular). Akka is a set of open-source

libraries for designing scalable, resilient system that span processor cores and

networks. Akka’s use of the actor model provides a level of abstraction that

makes it easier to write correct concurrent, parallel and distributed systems.

DCORE depend on several libraries that are downloaded and compiled us-

ing Sbt [39]. Sbt is a typesafe and parallel build tool for Scala and Java

projects. Sbt guarantees reproducibility of the compilation of the project. As

previoulsy mentioned, DCORE depends on our own fork of CORE that imple-

ments the novel distributed evaluation algorithm. DCORE is built as a white

box command-line interface program and has many available parameters. The

landing page of the project has a detailed explanation on how to compile and

run the project. Respect to the correctness of the implementation, we de-

signed several automated tests to validate that the implementation is close to

the specification.

6.2 Experimental setup

We compare our framework’s implementations, DCERE and DCORE, against

the leading CER system: CORE [3]. The comparison with alternative com-

petitors such as SASE [5], Esper [23], FlinkCEP [4] or TESLA/T-REX [6] is

left out of this work considering that CORE’s throughput is three orders of

magnitudes higher than them. CORE, DCERE, and CORE are semantically

comparable since they all use the same query language. Unfortunately, CORE

cannot evaluate non-unary predicates, thus we extended the system with an

ad-hoc rewrite and refine algorithms, similar to how DCERE is implemented,

but with no distributed part.

Setting. We run our experiments on a server equipped with a 6-core (2

threads per core) i7-8700 processor running at stock frequency, 32GB of RAM,

Chapter 6 Experimental evaluation 44

Arch Linux operating system, 5.15.7-arch1-1 kernel version, OpenJDK Run-

time 11.0.12, and the OpenJDK 64-Bit Server Virtual Machine build 11.0.12.

The Virtual Machine is restarted with 1024MB of freshly allocated memory

before each experiment.

Note. All the experiments are run on a single server instead of a cluster of

servers. We speculate that the results of our experiments in a cluster would be

similar, with small differences due to the overhead of network communication.

Validating this hypothesis is left for future work.

We compare systems with respect to their performance. All reported numbers

are averages taken over three repetitions of each experiment. We measure the

performance of each system, expressed as the execution time of the experiment

in milliseconds, as follows. To avoid measuring the data loading time of each

system, we first load the input stream completely in main memory. We then

start the timer, run the experiment, and stop the timer as soon as the last

output is enumerated. Recognized complex events are written to /dev/null

device to guarantee that the events are enumerated (avoiding dead call opti-

mization), but at the same time not measuring writing costs. The null device

is a virtual device present in all Linux systems that results in zero cost on

writing operations. For consistency reasons, we have verified that all systems

produced the same set of complex events.

ACM SIGMOD 2022 Availability & Reproducibility. Our work com-

plies with ACM SIGMOD 2022 Availability & Reproducibility criteria [40] :

(1) our prototype is provided as a white box, (2) the process to generate the

input data is available, (3) the experiments can be reproduced in order to

generate the experimental data, and (4) the script/spreadsheet to transform

the raw data into the plots is provided.

As far as we are concerned, there does not exist a standard benchmark for

complex event recognition. For this reason, we experiment with a set of queries

over synthetic data. We considered sequence queries and iteration queries for

our experiments, which have been used for benchmarking in CER before (for

example [41] and [42]). Specifically, we have considered the three queries

depicted in Figure 6.1 where the pattern P is different on each query. We

remark that the considered experimental queries contain a binary predicate

(i.e., A[id] = B[id]). Indeed, it would be interesting to evaluate other types

Chapter 6 Experimental evaluation 45

of complex predicates, but this would require an actual implementation of the

rewrite and refine algorithm, which is outside of the scope of this work.

SELECT *

FROM S

WHERE P

FILTER A[id] = B[id]

WITHIN 100 events

Q1 : P = A;B;C

Q2 : P = A;B+;C

Q3 : P = A+;B+;C

Figure 6.1: Queries considered in the experimental setting

We generated three different input streams, one per query, that guarantee

that the number of complex events matched is the same in each. As depicted

in Figure 6.2, in S1, we generate as many events of type A as events of type

B, and only a single closing event C, which forces the partial open events to

close. In S2, we generated a single event of type A, followed by many events

of type B, and a closing event C. In S3, we generated a stream of pairs A,B

and a single closing event C. The id attribute has been uniformly at random

assigned with values {1, 2, 3}. The length of each stream is different for a

particular size of set of complex events (e.g., to generate 100 complex events,

S1 requires a stream containing 10 events of type A and 10 events of type B,

while S2 only requires a stream containing 7 events of type B).

S1 : A,A. . .B,B. . .C

S2 : A,B,B,B. . .C

S3 : A,B,A,B. . .C

Figure 6.2: Example input streams

The following sections are devoted to the experimental results. For each ex-

periment, we will state the aspect under evaluation, describe the experiment,

and discuss the results.

Chapter 6 Experimental evaluation 46

#Complex Events

Ti
m

e
(m

s)

0

20000

40000

60000

200 400 600 800

(a) Q1

Complex Events

0

25000

50000

75000

100000

200 400 600 800 1000

(b) Q2

#Complex Events

0

20000

40000

60000

80000

100 200 300 400 500 600 700

CORE

DCERE(RR)

DCERE(PoTC)

DCERE(ES)

DCERE(MCEE)

DCORE

(c) Q3

Figure 6.3: The performance of evaluating queries Q1, Q2, and Q3 over
stream S1, S2, S3, respectively.

6.3 Experiments on the evaluation of complex

predicates

In this section, we designed an experiment to measure the performance char-

acteristics of CORE, DCERE, and DCORE under queries with complex pred-

icates. This experiment also evaluates the performance of DCERE under

different distributions strategies. In Figure 6.3, we display the results of eval-

uating queries Q2, and Q3 for an increasing number of complex events. The

recognition time of all system increases as the number of complex event grows.

Nevertheless, the degrading behaviour of CORE is more evident in this plot.

Surprisingly, all distribution strategies have similar performance. The results

of this experiment validate our hypothesis that distribution strategy Maximal

Chapter 6 Experimental evaluation 47

Complex Event Enumeration does not perform well in practise, as discussed

in Section 4.2.1. We conclude that DCORE performs better than both CORE

and DCERE. Furthermore, in the presence of complex and large streams, our

novel distributed evaluation algorithm outperforms its sequential predecessor.

6.4 Experiments on the scalability of the frame-

work

In this section, we study the scalability of DCERE and DCORE. For this

reason, we designed two different experiments. The first experiment studies

the quality on the load-balance of the different distribution strategies. For

this experiment, we compute the coefficient of variation of the load of each

processing unit during the evaluation of the queries Q2, and Q3. The coeffi-

cient of variation (CV) is a standarized measure of dispersion of a frequency

distribution and it is defined as the ratio of the standard deviation to the

mean. The lower the CV the less variability among the loads of the pro-

cessing units; hence, a better scalability of the system on uniform processing

units. In Figure 6.4, we show the coefficient of variation of the different distri-

bution strategies (i.e. RR, PoTC, ES, and MCEE) and DCORE. The results

show that all systems have a low coefficient of variation (< 0.3), with almost

optimal CV on DCORE.

Complex Events

0.0

0.1

0.2

0.3

200 400 600 800 1000

(a) Q2

Complex Events

0.00

0.05

0.10

0.15

100 200 300 400 500 600 700

DCERE(RR)

DCERE(PoTC)

DCERE(ES)

DCERE(MCEE)

DCORE

(b) Q3

Figure 6.4: The coefficient of variation of evaluating queries Q2, and Q3

under distributions strategies RR, PoTC, ES, and MCEE.

Chapter 6 Experimental evaluation 48

#Workers

Ti
m
e(
m
s)

0

25000

50000

75000

100000

2 4 6 8 10

(a) 1024 complex events

#Workers

0

50000

100000

150000

200000

2 4 6 8 10

DCERE(RR)

DCERE(PoTC)

DCERE(ES)

DCERE(MCEE)

DCORE

(b) 2048 complex events

Figure 6.5: The horizontal scalability of DCERE and DCORE evaluating
query Q2 over increasing number of processing units.

The second experiment studies the horizontal scalability of the systems. In

Figure 6.5, we show the execution time of the processing of query Q2 on an

increasing number of processing units, from 1 to 10. This experiment is run on

two different streams. At the left, we executed the experiment with an stream

that contained 1024 complex events. At the right, the number of complex

events is doubled, 2048. This will allow us to study the impact of an increase

of complexity in the scalability of the system. The results show that DCORE

scales almost linearly in the number of processing units. However, DCERE

reaches a threshold of negative results around 8 processing units, where in-

creasing the number of processing units only degrades the performance of the

system. In other words, DCORE scaling is better compared to DCERE.

6.5 Experiments on DCORE’s evaluation al-

gorithm under Big Data requirements

In this last section, we study the performance of the distributed evaluation

algorithm of DCORE under heavy loads. For this reason, we designed three

experiments. In the first experiment, we run DCORE over queries Q1, Q2,

and Q3, with variable number of processing units 1, 2, 4, 6, 8, 10. For each

configuration, we run the experiment on an increasing number of complex

events. Notice, the number of complex events in this experiment is orders of

magnitudes (OOM) larger than in previous ones. In Figure 6.6, we show the

Chapter 6 Experimental evaluation 49

#complex events

Ti
m

e
(m

s)

0

2500

5000

7500

10000

2.50E+6 5.00E+6 7.50E+6 1.00E+7 1.25E+7 1.50E+7

(a) Q1

#complex events

0

5000

10000

15000

20000

2.50E+6 5.00E+6 7.50E+6 1.00E+7 1.25E+7 1.50E+7

(b) Q2

#complex events

0

5000

10000

15000

20000

2.50E+6 5.00E+6 7.50E+6 1.00E+7 1.25E+7 1.50E+7 1.75E+7

1 worker

2 workers

4 workers

6 workers

8 workers

10 workers

(c) Q3

Figure 6.6: The horizontal scalability of DCORE under increasing num-
ber of processing units.

execution time of the processing of queries Q1, Q2, and Q3 under different

number of processing units. The results show that under small loads, the

sequential version of the algorithm (corresponding to DCORE with a single

processing unit) performs better than the distributed version. Under heavy

loads (i.e., more than 1 million complex events) the distribution pays off.

The optimal number of processing units depend on the scale of the problem.

For example, under a load of 106 complex events the best configuration is 4

workers. We see that depending on the query, the performance of the system

changes. We conclude that under small loads distributing the system only

degrades performance, while under heavy loads the distribution speeds up the

process of recognition of complex events.

Chapter 6 Experimental evaluation 50

Time (ms)

P
ro

ce
ss

 id
en

tif
ie

r

0

1

2

3

4

5

6

7

0 500 1000 1500

A;B;C

A;B+;C

A+;B+;C

Figure 6.7: The execution time on each processing unit of DCORE eval-
uating queries Q1, Q2, and Q3.

In the second experiment, we study the execution time of each processing unit

during the evaluation of queries Q1, Q2, and Q3. The goal of this experiment is

to analyse the amount of work of each processing unit. A balanced distribution

of work loads would result in overall better performance of the system. In

Figure 6.7, we show the results of the second experiment on 8 processing units

over a fixed length of stream. The results show no evidence of significant

differences between the execution time on each processing unit. We conclude

that this is a relevant factor on the performance of DCORE.

In this last experiment, we compare the performance of DCORE against an

hypothetical optimal distributed system based on CORE. The goal of this

experiment is to analyse how close is DCORE from an optimal distributed

system with same performance characteristics on the evaluation algorithm

(e.g., CORE). For this experiment, we evaluated queries Q1, Q2, and Q3 over

a stream of fixed length that produced 2 ·106 complex events. The experiment

is repeated for different number of processes: 2, 4, 6, 8. In Figure 6.8, we show

the results of this experiment. The blue bars corresponds to the execution

time of the experiment for DCORE, while the green bars corresponds to the

execution time of CORE divided by the number of processing units of each

iteration, which hypothetically corresponds to the best performance DCORE

could ever achieve.

Chapter 6 Experimental evaluation 51

Query (A;B;C), Query (A;B+;C), Query (A+;B+;C)

Ti
m

e
(m

s)

0

250

500

750

1000

1250

Best Actual

(a) 2 processes

Query (A;B;C), Query (A;B+;C), Query (A+;B+;C)

Ti
m

e
(m

s)

0

250

500

750

1000

Best Actual

(b) 4 processes

Query (A;B;C), Query (A;B+;C), Query (A+;B+;C)

Ti
m

e
(m

s)

0

250

500

750

1000

Best Actual

(c) 6 processes

Query (A;B;C), Query (A;B+;C), Query (A+;B+;C)

Ti
m

e
(m

s)

0

250

500

750

1000

1250

Best Actual

(d) 8 processes

Figure 6.8: Comparison of the execution time of an optimal distributed
system based on CORE against DCORE.

The results show that DCORE is close to the optimal value when distributed

over 2 processing units. However, the gap grows as the number of processing

units increases. We conjecture that the cost of enumerating the first complex

event in the data structure diminish the performance gains from distributions.

In other words, in order to compensate the cost of enumerating the first path

on the tECS, which is linear in the size of the complex event, each processing

unit requires a reasonable amount of complex events.

6.6 Chapter summary

In this chapter, we presented a set of experiments to study the performance

and scalability of both our distributed framework for CER and our distributed

evaluation algorithm. First, we describe the implementation of DCORE.

Then, we described the general settings of the experiments such as hardware,

input streams and queries, among others. Finally, we presented and discussed

the experiments, and their corresponding results.

Chapter 7

Conclusions and future work

We presented a novel distributed CER framework that focuses on the efficient

evaluation of a large class of complex event queries, including n-ary predicates.

We proposed two implementations based on such framework: DCERE and

DCORE. In particular, DCORE uses a novel evaluation algorithm that tack-

les the super-linear complexity of non-unary predicates and the exponential

complexity of the enumeration. Furthermore, our experiments results show

that our framework is practical and outperforms its competitors on queries

with complex predicates over large streams of data.

We plan to extend our research in a few directions. We will extend our frame-

work with a generic rewrite and refine algorithms and show its correctness.

And, we are also working on an extension of the distributed evaluation algo-

rithm that takes into account time windows during the distribution phase.

52

Appendix A

A.1 Proof of Theorem 5.2

Theorem A.1 (JnKϵE(j)←→ paths≥j−ϵ(n)). For every complex event within a

time window of size ϵ there exists exactly one path that reaches a bottom node

b with pos(b) ≥ j − ϵ, and vice versa.

Proof. Fix j, ϵ, and E . Let n be a node in E . The proof follows by the

definition of JnKϵE(j), JnKE , Jp̄KE , and paths≥τ (n). Recall that

• JnKϵE(j) = {([i, j], D) | (i,D) ∈ JnKE∧j−i ≤ ϵ} encodes all open complex

events represented by n in E that, when closed with j, are within a time

window of size ϵ,

• JnKE =
⋃

p̄;start(p̄)=n

Jp̄KE encodes all open complex events Jp̄KE with p̄ a

full-path in E starting at n, and

• Jp̄KE = (i,D) where p̄ = n1, n2, . . . , nk be a full-path in E such that nk is

a bottom node, i = pos(nk) is the label of the bottom node nk, and D

is the set of labels of the other non-union nodes in p̄.

First, we prove JnKϵE(j) 7−→ paths≥j−ϵ(n). Given a complex event ([i, j], D) ∈
JnKϵE(j), there is an open complex event (i,D) ∈ JnKE that is represented

as the full-path p̄ = n1, n2, . . . , nk in E such that nk is a bottom node and

i = pos(nk) is the label of the bottom node nk. Notice, n1 = n is the starting

node, j = pos(n1) is the label of the starting node n1, and j − i ≤ ϵ. By

definition, p̄ ∈ paths≥τ (n).

53

Appendix A 54

Secondly, we prove that paths≥j−ϵ(n) 7−→ JnKϵE(j). The proof follows by ex-

panding the definition of paths≥τ (n) and following the steps of the previous

proof in reverse order.

Finally, by JnKϵE(j) 7−→ paths≥j−ϵ(n) and paths≥j−ϵ(n) 7−→ JnKϵE(j), JnKϵE(j)←→
paths≥j−ϵ(n) immediately holds.

A.2 Algorithms Chapter 4

A.2.1 Maximal Complex Event Enumeration

Algorithm 3: Distributed enumeration of a set of maximal complex events
Cmax
V over a set of processing units P .

1 procedure Mcee(Cmax
V , P)

2 K ← ∅
3 for Cmax

V ∈ Cmax
V do

4 K ← K ∪ Configurations(Cmax
V).Map(λK → ⟨K,Cmax

V ⟩)
5 D ←GroupBy(K, λ⟨K, ⟩ → K)
6 Distribute(P , D)

7

8 procedure Enumerate(D)
9 for ⟨K, Cmax

V ⟩ ∈ D do
10 T ← new-node()
11 for Cmax

V ∈ Cmax
V do

12 G ← Partition(Cmax
V)

13 Loop(T,G, ∅,⊥, K)

14

15 procedure Loop(n,G, CV , new,K)
16 switch G do
17 case ∅ do
18 if new then
19 return CV

20 case G ∪ G do
21 k ← K(type(G))

22 N ←
(
G
k

)

23 for i ∈ N do
24 if ∃n′ ∈ children(n). event(n’) = i then
25 Loop(n′,G, CV ∪ i, new)
26 else
27 n′ ←new-node(i)
28 add(children(n), n’)
29 Loop(n′,G, CV ∪ i,⊤, K)

Appendix A 55

Algorithm 3 consist of two procedures: Mcee and Enumerate. The main

procedure is Mcee, which is executed in the master actor, while Enumer-

ate is executed on each slave actor. It receives as an input a set of max-

imal complex events Cmax
V := {C1

V , . . . , C
n
V } and a set of processing unit

P := {P1, . . . , Pn}, and outputs all complex events C ′
V ⊆ Cmax

V distributedly.

The for (lines 3-4) compute the set of configurations corresponding to each

maximal complex event in Cmax
V (see Algorithm 4) and pairs each configuration

with its maximal complex event. A configuration is a binary relation T × N
from data-tuples t ∈ T to natural numbers. For example, given complex event

CV := {T, T,H,H,H}, then Configurations(CV) = {{T, 2}, {H, 3}}.

Algorithm 4: Configuration of a complex event CV .

1 procedure Configurations(CV)
Input: A complex event CV = {i, . . . , j} with CV ⊆ 2N.
Output: A set K of configurations K := T× N where K is the

mapping from the event type t ∈ T to the size of the group
of consecutive events of type t in the complex CV .

2 V ← ∅
3 i ∪ C ′

V ← head(CV)
4 A← {i}
5 type(A)← type(i)
6 for j ∈ C ′

V do
7 if type(j) = type(A) then
8 A← A ∪ j
9 if last(CV) = j then

10 V ← V ∪ enum(1, |A|)
11 else
12 V ← V ∪ enum(1, |A|)
13 A← {j}
14 type(A)← type(j)
15 W ← Ś

V ∈V
V

16 T ← ordered-types(CV)
17 K ← ∅
18 foreach W ∈ W do
19 K ← ∅
20 for i← 1 to |W | do
21 K ← K ∪ (T [i],W [i])
22 C ← C ∪ C
23 return C

GroupBy of line 5 groups the set of tuples K := {⟨CV , K⟩, . . .} by their

configuration resulting in the set of tuples D := {⟨K, CV }⟩, . . .}, where CV :=

{C1
V , . . . , C

m
V }. Then, the set D is distributed among the |P| processing units

Appendix A 56

using a generic load-balancing algorithm Distribute. The choice of imple-

mentation does not affect the correctness of the algorithm.

The procedure Enumerate receives the set of tuples D := {⟨K, CV }⟩, . . .}
and enumerates all complex events included in each CV filtered by K. K is

a configuration and for each event type T , it returns the exact number of

complex event of that type that must be present in the resulting complex

events. This is what allows us to control the load-balancing of the process,

by distributing the configurations assigned to each process. For each tuple

⟨K, CV ⟩, lines 10-13 are executed. First, a new tree root T is created on

line 10. This n-ary tree will be used through the algorithm to detect which

complex events have been outputted before to avoid duplicates. Then, for

each maximal complex event CV ∈ CV , the procedure Partition is executed

and the result is given to procedure Loop.

The procedure Partition partitions the complex event CV in sets of consec-

utive positions of events of the same type. For example,

Partition({T, T,H,H,H}) = {{T, T}, {H,H,H}}

Loop receives as input a node n, a grouped complex event G, a partial complex

event CV , a boolean new, and a configuration K. On each iteration, Loop

extends CV with the next group in G and the configuration K associated to

that group. The switch from line 16 is split in two cases. Case 1 (lines 17-

19) corresponds to the base case when G is empty. If the complex event CV

has not been outputted before (i.e., new = ⊤), then we output the complex

event CV and stop. Case 2 (lines 20-29) corresponds to the inductive step

when G has at least a group of events of the same type in the corresponding

complex event. Notice, that G on each iteration is smaller, ergo the algorithm

terminates. For each group of events of the same type G, k ∈ N is retrieved

from the configuration K, which corresponds to the size assigned to that

processing unit for the group G. Different processing units will have different

sizes assigned to each group, resulting in disjoint complex events enumerated

by each unit. The k-combination set N :=
(
G
k

)
is computed, where N contains

permutations of complex event positions. Then, for each k-combinations of

events, lines 23-29 are executed. In both cases, CV is extended with positions

i ⊆ 2N. If there exists a children node n′ in n that contains events i, then

we recursively call Loop with extended complex even CV ∪ i, but we do not

update new since an event such as CV ∪ i has already been outputted before.

Otherwise, we create a new node n′ with events i, extend our current node n

Appendix A 57

with n′, and, as before, we call Loop, but this time with argument new = ⊤
indicating that complex event CV has not been enumerated before, which will

eventually reach the base case and enumerate this new complex event.

Bibliography

[1] Nikos Giatrakos, Alexander Artikis, Antonios Deligiannakis, and Minos

Garofalakis. Complex event recognition in the big data era: A sur-

vey. Proc. VLDB Endow., 10(12):1996–1999, aug 2017. ISSN 2150-

8097. doi: 10.14778/3137765.3137829. URL https://doi.org/10.

14778/3137765.3137829.

[2] B. S. Sahay and Jayanthi Ranjan. Real time business intelligence in

supply chain analytics. Inf. Manag. Comput. Secur., 16(1):28–48, 2008.

doi: 10.1108/09685220810862733. URL https://doi.org/10.1108/

09685220810862733.

[3] Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and

Stijn Vansummeren. CORE: a complex event recognition engine. CoRR,

abs/2111.04635, 2021. URL https://arxiv.org/abs/2111.04635.

[4] Flinkcep - complex event processing for flink, Jan 2022. URL

https://nightlies.apache.org/flink/flink-docs-release-1.13/

docs/libs/cep/.

[5] Eugene Wu, Yanlei Diao, and Shariq J. Rizvi. High-performance complex

event processing over streams. Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, 2006.

[6] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined

event specification language. In Jean Bacon, Peter R. Pietzuch, Joe

Sventek, and Ugur Çetintemel, editors, Proceedings of the Fourth ACM

International Conference on Distributed Event-Based Systems, DEBS

2010, Cambridge, United Kingdom, July 12-15, 2010, pages 50–61. ACM,

2010. doi: 10.1145/1827418.1827427. URL https://doi.org/10.1145/

1827418.1827427.

58

https://doi.org/10.14778/3137765.3137829
https://doi.org/10.14778/3137765.3137829
https://doi.org/10.1108/09685220810862733
https://doi.org/10.1108/09685220810862733
https://arxiv.org/abs/2111.04635
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/libs/cep/
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/libs/cep/
https://doi.org/10.1145/1827418.1827427
https://doi.org/10.1145/1827418.1827427

BIBLIOGRAPHY 59

[7] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.

Efficient pattern matching over event streams. In Proceedings of the 2008

ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’08, page 147–160, New York, NY, USA, 2008. Association for Com-

puting Machinery. ISBN 9781605581026. doi: 10.1145/1376616.1376634.

URL https://doi.org/10.1145/1376616.1376634.

[8] Alejandro Grez, Cristian Riveros, and Mart́ın Ugarte. A Formal Frame-

work for Complex Event Processing. In Pablo Barcelo and Marco

Calautti, editors, 22nd International Conference on Database Theory

(ICDT 2019), volume 127 of Leibniz International Proceedings in In-

formatics (LIPIcs), pages 5:1–5:18, Dagstuhl, Germany, 2019. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-101-6. doi:

10.4230/LIPIcs.ICDT.2019.5. URL http://drops.dagstuhl.de/opus/

volltexte/2019/10307.

[9] Alejandro Grez, Cristian Riveros, Mart́ın Ugarte, and Stijn Vansum-

meren. A formal framework for complex event recognition. ACM Trans.

Database Syst., 46(4):16:1–16:49, 2021. doi: 10.1145/3485463. URL

https://doi.org/10.1145/3485463.

[10] Alejandro Grez, Cristian Riveros, Mart́ın Ugarte, and Stijn Vansum-

meren. On the Expressiveness of Languages for Complex Event Recog-

nition. In Carsten Lutz and Jean Christoph Jung, editors, 23rd Inter-

national Conference on Database Theory (ICDT 2020), volume 155 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–

15:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik. ISBN 978-3-95977-139-9. doi: 10.4230/LIPIcs.ICDT.2020.15.

URL https://drops.dagstuhl.de/opus/volltexte/2020/11939.

[11] Bugra Gedik. Partitioning functions for stateful data parallelism in

stream processing. VLDB J., 23(4):517–539, 2014.

[12] Nicolo Rivetti, Leonardo Querzoni, Emmanuelle Anceaume, Yann Busnel,

and Bruno Sericola. Efficient key grouping for near-optimal load balanc-

ing in stream processing systems. In Proceedings of the 9th ACM Interna-

tional Conference on Distributed Event-Based Systems, DEBS ’15, Oslo,

Norway, June 29 - July 3, 2015, pages 80–91, 2015.

https://doi.org/10.1145/1376616.1376634
http://drops.dagstuhl.de/opus/volltexte/2019/10307
http://drops.dagstuhl.de/opus/volltexte/2019/10307
https://doi.org/10.1145/3485463
https://drops.dagstuhl.de/opus/volltexte/2020/11939

BIBLIOGRAPHY 60

[13] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced

allocations. SIAM J. Comput., 29(1):180–200, 1999.

[14] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David

Garćıa-Soriano, Nicolas Kourtellis, and Marco Serafini. The power of

both choices: Practical load balancing for distributed stream processing

engines. In 31st IEEE International Conference on Data Engineering,

ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 137–148, 2015.

[15] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nico-

las Kourtellis, and Marco Serafini. When two choices are not enough:

Balancing at scale in distributed stream processing. In 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), pages 589–600.

IEEE, 2016.

[16] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysan-

this. A holistic view of stream partitioning costs. PVLDB, 10(11):1286–

1297, 2017.

[17] Matthieu Caneill, Ahmed El-Rheddane, Vincent Leroy, and Noël De

Palma. Locality-aware routing in stateful streaming applications. In Pro-

ceedings of the 17th International Middleware Conference, Trento, Italy,

December 12 - 16, 2016, page 4, 2016.

[18] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios

Paliouras. Probabilistic complex event recognition: A survey. ACM Com-

put. Surv., 50(5), sep 2017. ISSN 0360-0300. doi: 10.1145/3117809. URL

https://doi.org/10.1145/3117809.

[19] Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song

Wang, Ismail Ari, and Abhay Mehta. E-cube: Multi-dimensional event

sequence analysis using hierarchical pattern query sharing. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’11, page 889–900, New York, NY, USA, 2011. Associ-

ation for Computing Machinery. ISBN 9781450306614. doi: 10.1145/

1989323.1989416. URL https://doi.org/10.1145/1989323.1989416.

[20] Yuan Mei and Samuel Madden. Zstream: A cost-based query processor

for adaptively detecting composite events. In Proceedings of the 2009

https://doi.org/10.1145/3117809
https://doi.org/10.1145/1989323.1989416

BIBLIOGRAPHY 61

ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’09, page 193–206, New York, NY, USA, 2009. Association for Com-

puting Machinery. ISBN 9781605585512. doi: 10.1145/1559845.1559867.

URL https://doi.org/10.1145/1559845.1559867.

[21] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad

Stojanovic, and Rudi Studer. A rule-based language for complex event

processing and reasoning. In Pascal Hitzler and Thomas Lukasiewicz, ed-

itors, Web Reasoning and Rule Systems, pages 42–57, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg. ISBN 978-3-642-15918-3.

[22] Alexander Artikis, Marek Sergot, and Georgios Paliouras. An event cal-

culus for event recognition. IEEE Transactions on Knowledge and Data

Engineering, 27(4):895–908, 2014.

[23] Complex event processing, streaming analytics, streaming sql, Jan 2021.

URL https://www.espertech.com/.

[24] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.

Distributed complex event processing with query rewriting. In Proceed-

ings of the Third ACM International Conference on Distributed Event-

Based Systems, DEBS ’09, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605586656. doi: 10.1145/1619258.

1619264. URL https://doi.org/10.1145/1619258.1619264.

[25] Martin Hirzel. Partition and compose: Parallel complex event processing.

In Proceedings of the 6th ACM International Conference on Distributed

Event-Based Systems, DEBS ’12, page 191–200, New York, NY, USA,

2012. Association for Computing Machinery. ISBN 9781450313155. doi:

10.1145/2335484.2335506. URL https://doi.org/10.1145/2335484.

2335506.

[26] Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. Mini-

mizing communication overhead in window-based parallel complex event

processing. In Proceedings of the 11th ACM International Conference

on Distributed and Event-Based Systems, DEBS ’17, page 54–65, New

York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450350655. doi: 10.1145/3093742.3093914. URL https://doi.org/

10.1145/3093742.3093914.

https://doi.org/10.1145/1559845.1559867
https://www.espertech.com/
https://doi.org/10.1145/1619258.1619264
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1145/3093742.3093914
https://doi.org/10.1145/3093742.3093914

BIBLIOGRAPHY 62

[27] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen. Dis-

tributed event stream processing with non-deterministic finite automata.

In Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA, July 6-9,

2009, 2009.

[28] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong,

Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and

Walker M. White. Cayuga: a high-performance event processing engine.

In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, Beijing, China, June 12-14, 2007, pages 1100–1102,

2007.

[29] Martin Hirzel. Partition and compose: parallel complex event processing.

In Proceedings of the Sixth ACM International Conference on Distributed

Event-Based Systems, DEBS 2012, Berlin, Germany, July 16-20, 2012,

pages 191–200, 2012.

[30] Martin Hirzel, Scott Schneider, and Bugra Gedik. SPL: an extensible

language for distributed stream processing. ACM Trans. Program. Lang.

Syst., 39(1):5:1–5:39, 2017.

[31] Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. RIP:

run-based intra-query parallelism for scalable complex event processing.

In The 7th ACM International Conference on Distributed Event-Based

Systems, DEBS ’13, Arlington, TX, USA - June 29 - July 03, 2013,

pages 3–14, 2013.

[32] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing:

Principles, Algorithms, and Systems. Cambridge University Press, March

2011. ISBN 9780521189842. URL https://www.cs.uic.edu/~ajayk/

DCS-Book.

[33] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM,

13(2):94–102, feb 1970. ISSN 0001-0782. doi: 10.1145/362007.362035.

URL https://doi.org/10.1145/362007.362035.

[34] M. Mitzenmacher. The power of two choices in randomized load bal-

ancing. IEEE Transactions on Parallel and Distributed Systems, 12(10):

1094–1104, 2001. doi: 10.1109/71.963420.

https://www.cs.uic.edu/~ajayk/DCS-Book
https://www.cs.uic.edu/~ajayk/DCS-Book
https://doi.org/10.1145/362007.362035

BIBLIOGRAPHY 63

[35] Moshe Vardi. The complexity of relational query languages (extended

abstract). pages 137–146, 01 1982. doi: 10.1145/800070.802186.

[36] Bill Venners. The java virtual machine. Java and the Java virtual ma-

chine: definition, verification, validation, 1998.

[37] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-

tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik

Stenman, and Matthias Zenger. An overview of the scala programming

language. 2004.

[38] Derek Wyatt. Akka concurrency. Artima Incorporation, 2013.

[39] Sbt: The interactive build tool, Jan 2022. URL https://www.

scala-sbt.org/index.html.

[40] Acm sigmod 2022 availability & reproducibility, Jan 2022. URL https:

//reproducibility.sigmod.org/.

[41] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and

Walker White. Towards expressive publish/subscribe systems. In In Pro-

ceedings of the International Conference on Extending Database Technol-

ogy, pages 627–644, 2006.

[42] Medhabi Ray, Chuan Lei, and Elke A. Rundensteiner. Scalable pat-

tern sharing on event streams*. In Proceedings of the 2016 Interna-

tional Conference on Management of Data, SIGMOD ’16, page 495–510,

New York, NY, USA, 2016. Association for Computing Machinery. ISBN

9781450335317. doi: 10.1145/2882903.2882947. URL https://doi.org/

10.1145/2882903.2882947.

https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://reproducibility.sigmod.org/
https://reproducibility.sigmod.org/
https://doi.org/10.1145/2882903.2882947
https://doi.org/10.1145/2882903.2882947

	List of Figures
	Introduction
	Contributions
	Outline

	Related Work
	Stream partitioning
	CER systems
	Distributed CER
	Chapter summary

	Preliminaries
	Distributed computing
	Data-tuples, complex events, predicates, and valuations
	Complex Event Query Language
	Selection strategies
	Computational model
	Timed Enumerable Compact Set
	Auxiliary data structures
	Chapter summary

	Distributed CER
	Distributed CER framework
	Distributed CER Engine
	Distribution Strategies

	Distributed CORE
	Chapter summary

	Distributed evaluation algorithm
	The distributed algorithm
	The evaluation algorithm
	The Enumeration procedure
	Chapter summary

	Experimental evaluation
	DCORE in a nutshell
	Experimental setup
	Experiments on the evaluation of complex predicates
	Experiments on the scalability of the framework
	Experiments on DCORE's evaluation algorithm under Big Data requirements
	Chapter summary

	Conclusions and future work
	Appendix
	Proof of Theorem 5.2
	Algorithms Chapter 4
	Maximal Complex Event Enumeration

	Bibliography

